-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchap-boolean-fcd.tex
230 lines (182 loc) · 9.12 KB
/
chap-boolean-fcd.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
\chapter{Boolean funcoids}
\section{One-element boolean lattice}
Let $\mathfrak{A}$ be a boolean lattice and $\mathfrak{B}= \subsets 0$.
It's sole element is $\bot$.
$f \in \mathsf{pFCD} (\mathfrak{A}; \mathfrak{B}) \Leftrightarrow \forall X \in
\mathfrak{A}: (\supfun{f} X \nasymp \bot \Leftrightarrow \langle f^{-
1} \rangle \bot \nasymp X) \Leftrightarrow \forall X \in \mathfrak{A}: (0
\Leftrightarrow \supfun{f^{- 1}} \bot \nasymp X) \Leftrightarrow
\forall X \in \mathfrak{A}: \supfun{f^{- 1}} \bot \asymp X
\Leftrightarrow \forall X \in \mathfrak{A}: \supfun{f^{- 1}} \bot =
\bot^{\mathfrak{A}} \Leftrightarrow \supfun{f^{- 1}} \bot =
\bot^{\mathfrak{A}} \Leftrightarrow \supfun{f^{- 1}} = \{ (\bot ;
\bot^{\mathfrak{A}}) \}$.
Thus $\card \mathsf{pFCD} (\mathfrak{A}; \subsets 0) = 1$.
\section{Two-element boolean lattice}
Consider the two-element boolean lattice $\mathfrak{B}= \subsets 1$.
Let $f$ be a pointfree protofuncoid from $\mathfrak{A}$ to $\mathfrak{B}$
(that is $(\mathfrak{A};\mathfrak{B};\alpha;\beta)$ where $\alpha\in\mathfrak{B}^{\mathfrak{A}}$, $\beta\in\mathfrak{A}^{\mathfrak{B}}$).
$f \in \mathsf{pFCD} (\mathfrak{A}; \mathfrak{B}) \Leftrightarrow \forall X \in
\mathfrak{A}, Y \in \mathfrak{B}: (\supfun{f} X \nasymp Y
\Leftrightarrow \supfun{f^{- 1}} Y \nasymp X) \Leftrightarrow \forall X
\in \mathfrak{A}, Y \in \mathfrak{B}: ((0 \in \supfun{f} X \wedge 0 \in
Y) \vee (1 \in \supfun{f} X \wedge 1 \in Y) \Leftrightarrow \langle
f^{- 1} \rangle Y \nasymp X)$.
$T = \setcond{ X \in \mathfrak{A} }{ 0 \in \langle f
\rangle X }$ is an ideal. Really: That it's an upper set is obvious.
Let $P \cup Q \in \setcond{ X \in \mathfrak{A} }{ 0 \in
\supfun{f} X }$. Then $0 \in \supfun{f} (P \cup Q) =
\supfun{f} P \cup \supfun{f} Q$; $0 \in \supfun{f} P \vee
0 \in \supfun{f} Q$.
Similarly $S = \setcond{ X \in \mathfrak{A} }{ 1 \in
\supfun{f} X }$ is an ideal.
Let now $T, S \in \subsets \mathfrak{A}$ be ideals. Can we restore $\langle
f \rangle$? Yes, because we know $0 \in \supfun{f} X$ and $1 \in
\supfun{f} X$ for every $X \in \mathfrak{A}$.
So it is equivalent to $\forall X \in \mathfrak{A}, Y \in \mathfrak{B}: ((X
\in T \wedge 0 \in Y) \vee (X \in S \wedge 1 \in Y) \Leftrightarrow \langle
f^{- 1} \rangle Y \nasymp X)$.
$f \in \mathsf{pFCD} (\mathfrak{A}; \mathfrak{B})$ is equivalent to conjunction
of all rows of this table:
\begin{tabular}{|l|l|}
\hline
$Y$ & equality \\ \hline\hline
$\emptyset$ & $\supfun{f^{- 1}} \emptyset = \emptyset$\\
\{0\} & $X \in T \Leftrightarrow \supfun{f^{- 1}} \{ 0 \} \nasymp
X$\\ \hline
\{1\} & $X \in S \Leftrightarrow \supfun{f^{- 1}} \{ 1 \} \nasymp
X$\\ \hline
\{0,1\} & $X \in T \vee X \in S \Leftrightarrow \supfun{f^{- 1}} \{
0, 1 \} \nasymp X$ \\
\hline
\end{tabular}
Simplified:
\begin{tabular}{|l|l|}
\hline
$Y$ & equality \\ \hline\hline
$\emptyset$ & $\supfun{f^{- 1}} \emptyset = \emptyset$\\ \hline
\{0\} & $T = \corestar \supfun{f^{- 1}} \{ 0 \}$\\ \hline
\{1\} & $S = \corestar \supfun{f^{- 1}} \{ 1 \}$\\ \hline
\{0,1\} & $T \cup S = \corestar \supfun{f^{- 1}} \{ 0, 1 \}$ \\
\hline
\end{tabular}
From the last table it follows that $T$ and $S$ are principal ideals.
So we can take arbitrary either $\supfun{f^{- 1}} \{ 0 \}$, $\langle
f^{- 1} \rangle \{ 1 \}$ or principal ideals $T$ and $S$.
In other words, we take $\supfun{f^{- 1}} \{ 0 \}$, $\langle f^{- 1}
\rangle \{ 1 \}$ arbitrary and independently. So we have $\mathsf{pFCD}
(\mathfrak{A}; \mathfrak{B})$ equivalent to product of two instances of
$\mathfrak{A}$. So it a boolean lattice. \fxerror{I messed product with disjoint union below.)}
\section{Finite boolean lattices}
We can assume $\mathfrak{B}= \subsets B$ for a set $B$, $\card B =
n$. Then
$f \in \mathsf{pFCD} (\mathfrak{A}; \mathfrak{B}) \Leftrightarrow \forall X \in
\mathfrak{A}, Y \in \mathfrak{B}: (\supfun{f} X \nasymp Y
\Leftrightarrow \supfun{f^{- 1}} Y \nasymp X) \Leftrightarrow \forall X
\in \mathfrak{A}, Y \in \mathfrak{B}: (\exists i \in Y : i \in \langle f
\rangle X \Leftrightarrow \supfun{f^{- 1}} Y \nasymp X)$.
Having values of $\supfun{f^{- 1}} \{ i \}$ we can restore all $\langle
f^{- 1} \rangle Y$. [need this paragraph?]
Let $T_i = \setcond{ X \in \mathfrak{A} }{ i \in
\supfun{f} X }$.
Let now $T_i \in \subsets \mathfrak{A}$ be ideals. Can we restore $\langle
f \rangle$? Yes, because we know $i \in \supfun{f} X$ for every $X \in
\mathfrak{A}$.
So, it is equivalent to:
\begin{equation}
\label{pfcond-x} \forall X \in \mathfrak{A}, Y \in \mathfrak{B}: (\exists i
\in Y : X \in T_i \Leftrightarrow \supfun{f^{- 1}} Y \nasymp X) .
\end{equation}
\begin{lem}
The formula (\ref{pfcond-x}) is equivalent to:
\begin{equation}
\label{pfcond-i} \forall X \in \mathfrak{A}, i \in B : (X \in T_i
\Leftrightarrow \supfun{f^{- 1}} \{ i \} \nasymp X) .
\end{equation}
\end{lem}
\begin{proof}
\begin{description}
\item[(\ref{pfcond-x})$\Rightarrow$(\ref{pfcond-i})] Just take $Y = \{ i
\}$.
\item[(\ref{pfcond-i})$\Rightarrow$(\ref{pfcond-x})] Let (\ref{pfcond-i})
holds. Let also $X \in \mathfrak{A}, Y \in \mathfrak{B}$. Then $\langle
f^{- 1} \rangle Y \nasymp X \Leftrightarrow \bigcup_{i \in Y} \langle f^{-
1} \rangle \{ i \} \nasymp X \Leftrightarrow \exists i \in Y : \langle
f^{- 1} \rangle \{ i \} \nasymp X \Leftrightarrow \exists i \in Y : X \in
T_i$.
\end{description}
\end{proof}
Further transforming: $\forall i \in B : T_i = \corestar \langle f^{- 1}
\rangle \{ i \}$.
So $\supfun{f^{- 1}} \{ i \}$ are arbitary elements of $\mathfrak{B}$
and $T_i$ are corresponding arbitrary principal ideals.
In other words, $\mathsf{pFCD} (\mathfrak{A}; \mathfrak{B}) \cong \mathfrak{A}
\Pi \ldots \Pi \mathfrak{A}$ ($\card B$ times). Thus $\mathsf{pFCD}
(\mathfrak{A}; \mathfrak{B})$ is a boolean lattice.
\section{About infinite case}
Let $\mathfrak{A}$ be a complete boolean lattice, $\mathfrak{B}$ be an
atomistic boolean lattice.
$f \in \mathsf{pFCD} (\mathfrak{A}; \mathfrak{B}) \Leftrightarrow \forall X \in
\mathfrak{A}, Y \in \mathfrak{B}: (\supfun{f} X \nasymp Y
\Leftrightarrow \supfun{f^{- 1}} Y \nasymp X) \Leftrightarrow \forall X
\in \mathfrak{A}, Y \in \mathfrak{B}: (\exists i \in \atoms Y : i \in
\atoms \supfun{f} X \Leftrightarrow \supfun{f^{- 1}} Y
\nasymp X)$.
Let $T_i = \setcond{ X \in \mathfrak{A} }{ i \in
\atoms \supfun{f} X }$.
$T_i$ is an ideal: Really: That it's an upper set is obvious. Let $P \cup Q
\in \setcond{ X \in \mathfrak{A} }{ i \in \atoms
\supfun{f} X }$. Then $i \in \atoms \supfun{f} (P
\cup Q) = \atoms \supfun{f} P \cup \atoms \supfun{f}
Q$; $i \in \supfun{f} P \vee i \in \supfun{f} Q$.
Let now $T_i \in \subsets \mathfrak{A}$ be ideals. Can we restore $\langle
f \rangle$? Yes, because we know $i \in \atoms \supfun{f} X$ for
every $X \in \mathfrak{A}$ and $\mathfrak{B}$ is atomistic.
So, it is equivalent to:
\begin{equation}
\label{mpfcond-x} \forall X \in \mathfrak{A}, Y \in \mathfrak{B}: (\exists i
\in \atoms Y : X \in T_i \Leftrightarrow \supfun{f^{- 1}} Y
\nasymp X) .
\end{equation}
\begin{lem}
The formula (\ref{mpfcond-x}) is equivalent to:
\begin{equation}
\label{mpfcond-i} \forall X \in \mathfrak{A}, i \in
\atoms^{\mathfrak{B}} : (X \in T_i \Leftrightarrow \langle f^{- 1}
\rangle i \nasymp X) .
\end{equation}
\end{lem}
\begin{proof}
\begin{description}
\item[(\ref{mpfcond-x})$\Rightarrow$(\ref{mpfcond-i})] Let
(\ref{mpfcond-x}) holds. Take $Y = i$. Then $\atoms Y = \{ i \}$ and
thus $X \in T_i \Leftrightarrow \exists i \in \atoms Y : X \in T_i
\Leftrightarrow \supfun{f^{- 1}} Y \nasymp X \Leftrightarrow
\supfun{f^{- 1}} i \nasymp X$.
\item[(\ref{mpfcond-i})$\Rightarrow$(\ref{mpfcond-x})] Let
(\ref{pfcond-i}) holds. Let also $X \in \mathfrak{A}$, $Y \in \mathfrak{B}$.
Then $\supfun{f^{- 1}} Y \nasymp X \Leftrightarrow \langle f^{- 1}
\rangle \bigsqcup \atoms Y \nasymp X \Leftrightarrow \bigsqcup_{i
\in \atoms Y} \supfun{f^{- 1}} i \nasymp X \Leftrightarrow
\exists i \in \atoms Y : \supfun{f^{- 1}} i \nasymp X
\Leftrightarrow \exists i \in \atoms Y : X \in T_i$.
\end{description}
\end{proof}
Further equivalently transforming: $\forall i \in \atoms^{\mathfrak{B}}
: T_i = \corestar \supfun{f^{- 1}} i$.
So $\supfun{f^{- 1}} i$ are arbitary elements of $\mathfrak{B}$ and
$T_i$ are corresponding arbitrary principal ideals.
In other words, $\mathsf{pFCD} (\mathfrak{A}; \mathfrak{B}) \cong \prod_{i \in
\card \atoms^{\mathfrak{B}}} \mathfrak{A}$. Thus $\mathsf{pFCD}
(\mathfrak{A}; \mathfrak{B})$ is a boolean lattice.
So finally we have a very weird theorem, which is a partial solution for the
above open problem (The weirdness is in its partiality and asymmetry):
\begin{thm}
If $\mathfrak{A}$ is a complete boolean lattice and $\mathfrak{B}$ is an
atomistic boolean lattice (or vice versa), then $\mathsf{pFCD} (\mathfrak{A};
\mathfrak{B})$ is a boolean lattice.
\end{thm}
\cite{shmuely1974}~proves
``THEOREM 4.6. Let $A$, $B$ be bounded posets. $A \otimes B$ is a completely
distributive complete Boolean lattice iff $A$ and $B$ are completely distributive
Boolean lattices.'' (where $A \otimes B$ is equivalent to the set of Galois connections between~$A$ and~$B$) and other interesting results.