-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlimit.tex
1185 lines (934 loc) · 54 KB
/
limit.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter{Introduction}
I defined \emph{funcoid} and based on this generalized \emph{limit of an arbitrary (even discontinuous) function} in~\cite{volume-1-edition1}.
In this chapter I consider generalized limits in more details.
This chapter is written in such a way that a reader could understand the main ideas on generalized limits without resorting to reading~\cite{volume-1-edition1} beforehand, but to follow the proofs you need read that first.
Definition of generalized limit makes it obvious to define such things as derivative of an arbitrary function, integral of an arbitrary function, etc.
Note that generalized limit is a ``composite'' object, not just a simple real number, point, or ``regular'' vector.
\chapter{A popular explanation of generalized limit}
For an example, consider some real function~$f$ from $x$-axis to $y$-axis:
\begin{figure}[H]
\begin{tikzpicture}
\begin{axis}[grid=both,
xmax=2,ymax=7,
axis lines=middle,
restrict y to domain=-7:7,
enlargelimits]
\addplot[domain=-5:5,samples=100]{pow(2,-10*x^2)+x^3};
\end{axis}
\end{tikzpicture}
\end{figure}
Take it's infinitely small fragment (in our example, an infinitely small interval for~$x$ around zero; see below for an explanation what is infinitely small):
\begin{figure}[H]
\begin{tikzpicture}
\begin{axis}[grid=both,
xmax=2,ymax=7,
axis lines=middle,
restrict y to domain=-7:7,
enlargelimits]
\addplot[domain=-0.2:0.2,samples=100]{pow(2,-10*x^2)+x^3};
\end{axis}
\end{tikzpicture}
\end{figure}
Next consider that with a value~$y$ replaced with an infinitely small interval like $[y-\epsilon;y+\epsilon]$:
\begin{figure}[H]
\begin{tikzpicture}
\begin{axis}[grid=both,
xmax=2,ymax=7,
axis lines=middle,
restrict y to domain=-7:7,
enlargelimits]
\addplot[domain=-0.2:0.2,samples=100,
line width=5pt]{pow(2,-10*x^2)+x^3};
\end{axis}
\end{tikzpicture}
\end{figure}
Now we have ``an infinitely thin and short strip''. In fact, it is the same as an ``infinitely small rectangle'' (Why? So infinitely small behave, it can be counter-intuitive, but if we consider the above meditations formally, we could get this result):
\begin{figure}[H]
\begin{tikzpicture}
\begin{axis}[grid=both,
xmax=2,ymax=7,
axis lines=middle,
restrict y to domain=-7:7,
enlargelimits]
\addplot[domain=-0.2:0.2,samples=100,
line width=5pt]{pow(2,-10)+1};
\end{axis}
\end{tikzpicture}
\end{figure}
This infinitely small rectangle's $y$~position uniquely characterizes the limit of our function (in our example at~$x\to 0$).
If we consider the set of all rectangles we obtain by shifting this rectangle by adding an arbitrary number to~$x$, we get
\begin{figure}[H]
\begin{tikzpicture}
\begin{axis}[grid=both,
xmax=2,ymax=7,
axis lines=middle,
restrict y to domain=-7:7,
enlargelimits]
\addplot[domain=-0.2:0.2,samples=100,
line width=5pt]{pow(2,-10)+1};
\addplot[domain=0.5:0.9,samples=100,
line width=5pt]{pow(2,-10)+1};
\addplot[domain=1.3:1.7,samples=100,
line width=5pt]{pow(2,-10)+1};
\addplot[domain=2.0:2.4,samples=100,
line width=5pt]{pow(2,-10)+1};
\addplot[domain=2.7:3.1,samples=100,
line width=5pt]{pow(2,-10)+1};
\addplot[domain=3.4:3.8,samples=100,
line width=5pt]{pow(2,-10)+1};
\end{axis}
\end{tikzpicture}
\end{figure}
Such sets one-to-one corresponds to the value of the limit of our function (at $x\to 0$): Knowing such the set, we can calculate the limit (take its arbitrary element and get its so to say $y$-limit point) and knowing the limit value~($y$), we could write down the definition of this set.
So we have a formula for \emph{generalized limit}:
\[ \lim_{x\to a} f(x) =
\{ \mathrm{X} \circ f|_{\Delta(a)} \circ r \mid r\in G \} \]
where~$G$ is the group of all horizontal shifts of our space~$\mathbb{R}$, $f|_{\Delta(a)}$ is the function~$f$ of which we are taking limit restricted to the infinitely small interval~$\Delta(a)$ around the point~$a$, $\mathrm{X}\circ{}$~is ``stretching'' our function graph into the infinitely thin ``strip'' by applying a topological operation to it.
What all this (especially ``infinitely small'') means? It is filters and ``funcoids'' (see below for the definition).
Why we consider all shifts of our infinitely small rectangle? To make the limit not dependent of the point~$a$ to which $x$~tends. Otherwise the limit would depend on the point~$a$.
Note that for discontinuous functions elements of our set (our limit is a set) won't be infinitely small ``rectangles'' (as on the pictures), but would ``touch'' more than just one~$y$ value.
The interesting thing here is that we can apply the above formula to \emph{every} function: for example to a discontinuous function, Dirichlet function, unbounded function, unbounded and discontinuous at every point function, etc. In short, the generalized limit is defined for \emph{every} function. We have a definition of limit for every function, not only a continuous function!
And it works not only for real numbers. It would work for example for any function between two topological vector spaces (a vector space with a topology).
Hurrah! Now we can define derivative and integral of \emph{every} function.
\chapter{Funcoids}
I will reprise (without proofs) several equivalent definitions of funcoid from~\cite{volume-1-edition1}:
Binary relation $\delta$ between two sets (source and destination of the funcoid), conforming to the axioms:
\begin{enumerate}
\item not $\emptyset\mathrel{\delta}X$
\item not $X\mathrel{\delta}\emptyset$
\item $I\cup J \mathrel{\delta} K\iff I \mathrel{\delta}K\wedge J\mathrel{\delta}K$
\item $K\mathrel{\delta}I\cup J\iff K \mathrel{\delta}I\wedge K\mathrel{\delta}J$
\end{enumerate}
Pair of functions $(\alpha,\beta)$ between the sets of filters filters on some two sets (source and destination of the funcoid), conforming to the formula:
\[ \alpha (\mathcal{X})\sqcap \mathcal{Y}\neq \bot \iff \beta (\mathcal{Y})\sqcap \mathcal{X}\neq \bot. \]
\begin{rem}
Funcoid~$(\alpha,\beta)$ is determined by the value of~$\alpha$ (or value of~$\beta$).
\end{rem}
A function $\Delta$ from the set of subsets of some set (source of the funcoid) to the set of filters on some set (destination of the funcoid), conforming to the axioms:
\begin{enumerate}
\item $\Delta (\emptyset)=\bot$
\item $\Delta (X\sqcup Y)=\Delta (X)\sqcup \Delta (Y)$
\end{enumerate}
(Here~$\sqcup$ and~$\sqcap$ are the join and the meet correspondingly on the lattice of filters with order reverse to set-theoretic inclusion, $\bot$~is the improper filter.)
Note that we define things to have the equations:
\begin{enumerate}
\item
\begin{multline*}
X\rsuprel{f}Y \Leftrightarrow X\mathrel{\delta}Y \Leftrightarrow \\ \uparrow X\suprel{(\alpha,\beta)}\uparrow Y \Leftrightarrow
\alpha (X)\sqcap Y\neq \bot \Leftrightarrow \\ \beta (Y)\sqcap X\neq \bot
\end{multline*}
\item $\rsupfun{f}X = \Delta X = \alpha\uparrow X$
\end{enumerate}
We will denote partial orders as~$\sqsubseteq$.
I will call \emph{endofuncoid} a funcoid whose source and destination are the same.
Funcoids form a semigroup (or semicategory, dependently on the exact axioms) with the operation defined by the formula:
\[ (\alpha _{1},\beta _{1})\circ (\alpha _{0},\beta _{0})=(\alpha _{1}\circ \alpha _{0},\beta _{0}\circ \beta _{1}). \]
We denote $\supfun{(\alpha,\beta)}=\alpha$ and
$(\alpha,\beta)^{-1} = (\beta,\alpha)$.
Funcoids also form a poset which is a complete lattice.
Funcoids are a generalization of both topological spaces and proximity spaces (see~\cite{volume-1-edition1}).
Also funcoids are~(\cite{volume-1-edition1}) a generalization of binary relations. (I will denote the funcoid corresponding~(\cite{volume-1-edition1}) to a binary relation~$f$ as~$\uparrow f$) This makes funcoids a common generalization for topologies/proximities and functions, so they are a convenient tool to study functions between spaces.
Another important for this chapter operation on funcoids is \emph{restricting} a funcoid to a filter (generalizing restricting a function to a set):~$f|_{\mathcal{X}}$ for a funcoid~$f$ and filter~$\mathcal{X}$.
In~\cite{volume-1-edition1} we also have a funcoid called \emph{funcoidal product} $\mathcal{X}\times^{\mathsf{FCD}}\mathcal{Y}$ of two filters~$\mathcal{X}$ and~$\mathcal{Y}$.
\chapter{Limit for funcoids}
The following is a straigthforward generalization of the well known concepts of adherent point of a set (more generally a cluster point of a filter), a limit point of a filter, a and limit of a function in a
topological space.
\begin{note}
Due to an unfortunate choice of terminology, limit point of a filter is \emph{not} a generalization of a limit point of a set.
Limit point for a set isn't a beautiful term and we won't use it (in this work), so by \emph{limit point} we will always mean a limit point of a filter.
\end{note}
So, generalizing the corresponding concepts for topological spaces:
Let $d$ be a funcoid.
\begin{defn}
The set of \emph{adherent points} of~$\mathcal{A}$ is
$\Cor\supfun{d^{-1}}\mathcal{A}$ or what is the same
$\setcond{x}{\supfun{d}\{x\}\nasymp\mathcal{A}}$.
\end{defn}
\begin{prop}
There exists a (unique) funcoid $\mathrm{A}$ such that
$\supfun{\mathrm{A}}\mathcal{A}$ is exactly the set of adherent points of~$\mathcal{A}$.
\end{prop}
\begin{proof}
Prove it directly or using that $\Cor$ is a component of a funcoid.
\end{proof}
\begin{defn}
\emph{Limit point} of a filter~$\mathcal{A}$ on $\Dst\mathrm{X}$ is
an~$x\in\Dst\mathcal{A}$ such that
$\rsupfun{d}\{x\}\sqsupseteq\mathcal{A}$.
\end{defn}
\begin{prop}
If $d$ is reflexive, then
there exists a (unique) ``dual funcoid'' (a pointfree funcoid) $\mathrm{L}: \Ob d\to(\Ob d)^{\dual}$ such that
$\supfun{\mathrm{L}}\mathcal{A}$ is exactly the set of limit points of~$\mathcal{A}$.
\end{prop}
\begin{proof}
The set of limit points of the empty set is the maximal set.
The set of limit points of $A\cup B$ (for sets~$A$,~$B$) is the
set of points~$x$ such that $\supfun{d}\{x\}\sqsupseteq A\cup B$ that is $\supfun{d}\{x\}\sqsupseteq A$ and $\supfun{d}\{x\}\sqsupseteq B$ that is the intersection of
the set of limit points of~$A$ and~$B$.
Thus the set of limit points is a component of such a pointfree funcoid.
\end{proof}
\begin{prop}
$\mathrm{L}$ and~$\mathrm{A}$ coincide on ultrafilters.
\end{prop}
\begin{proof}
Because $\rsupfun{d}\{x\}\nasymp a\Leftrightarrow\rsupfun{d}\{x\}\sqsupseteq a$ for an ultrafilter~$a$.
\end{proof}
We have shown that concepts of both limit points and adherent points are essentially funcoids. In traditional general topology limit of a function is defined using limit points of a filter. We will generalize it to limit regarding an arbitrary funcoid (in place of the funcoid describing limit points). We will call this
arbitrary funcoid \emph{the point funcoid} and denote it~$\mathrm{X}$.
\begin{defn}
\emph{Limit} of a funcoid~$f$ is
the filter \[ \lim f=\im(\mathrm{X}\circ f). \]
\end{defn}
\begin{defn}
\emph{Limit} of a funcoid~$f$ at a filter~$\mathcal{X}$ is
the filter \[ \lim_{\mathcal{X}}f=\lim f|_{\mathcal{X}}=\supfun{\mathrm{X}\circ f}\mathcal{X}. \]
\end{defn}
\begin{rem}
If $\mathrm{X}=\mathrm{L}$, then the limit is either an one-element or an empty set (``no limit'' in traditional topology).
\end{rem}
In~\cite{volume-1-edition1} limit for a funcoid~$f$ was defined this way: $f$~\emph{tends} to filter~$\mathcal{A}$ ($f\to \mathcal{A}$) regarding a funcoid~$\mathrm{X}$ on a filter~$\mathcal{X}$ iff
\[ \im f \sqsubseteq \supfun{\mathrm{X}}\mathcal{A}. \]
$\lim f$ is such a point that $f$~tends to $\lim f$.
\begin{prop}
That definition from~\cite{volume-1-edition1} coincides with
our above definition, if $\mathrm{X}=\mathrm{L}$.
\end{prop}
\begin{proof}
In this proof $\lim f$ will mean our definition, \emph{not} the definition from~\cite{volume-1-edition1}. We need to prove that
$\lim f=\setcond{x}{\im f\sqsubseteq\rsupfun{\mathrm{X}}\{x\}}$.
Really,
\[
\lim f=\im(\mathrm{L}\circ f) =
\supfun{\mathrm{L}}\im f =
\setcond{x}{\rsupfun{\mathrm{X}}\{x\}\sqsupseteq\im f}.
\]
\end{proof}
If $\mathrm{X}$~is Hausdorff ($T_2$-separable) (see~\cite{volume-1-edition1}), then there exists no more than one~$\lim f$.
\chapter{Axiomatic generalized limit}
Let~$\mathrm{X}$ be a (fixed) funcoid. For example, $\mathrm{X}=d$ where $d$~is
some proximity or $d=\mathrm{A}$ or $d=\mathrm{L}$ (up to a duality).
By definion $\lim_{\mathcal{X}}f = \supfun{\mathrm{X}\circ f}\mathcal{X}$ (for every funcoid~$f$).
\begin{rem}
If $\supfun{\mathrm{X}}y$ is an limit point (considered as an one-element set) of~$y$ and $f$~is a function, then the above
defined~$\lim$ is the
same as limit in traditional calculus and topology (except
that it is an one-element set of points instead of a point).
Empty set means ``no limit''.
\end{rem}
Let some group~$G$ (e.g. the group of all shifts on a vector
space, to give an example) is fixed.
\begin{defn}
\emph{Axiomatic generalized limit} is a two-arguments function $(f,\mathcal{X})\mapsto\xlim_{\mathcal{X}}f$
from the set $\funcoids(A,B)\times\mathscr{F}(A)$ to the set of functions defined on filters~$\mathcal{C}$ such that exists $r\in G$ such that $\mathcal{C}\sqsubseteq\supfun{r}\mathcal{X}$ by the formula:
\[
(\xlim_{\mathcal{X}}f)\mathcal{C} = \lim_{\supfun{r^{-1}}\mathcal{C}} f.
\]
\end{defn}
\begin{rem}
Its meaning is that $\lim_{\mathcal{C}} f$ can be restored from
$\xlim_{\mathcal{X}}f$.
\end{rem}
\begin{prop}
To describe an axiomatic generalized limit, it's enough to define
it on ultrafilters.
\end{prop}
\begin{proof}
Easily follows from the fact that a funcoid is described by its values on ultrafilters.
\end{proof}
Thus axiomatic generalized limit gives a detailed behavior of
a function at a filter (its limit at every its atomic subfilter).
\begin{obvious}
$\xlim_{\mathcal{X}}f = \xlim_{\supfun{r}\mathcal{X}}(f\circ r^{-1})$ for every~$r\in G$.
\end{obvious}
\begin{thm}
$\lim_{\mathcal{X}} f$ can be restored knowing $\xlim_{\mathcal{X}} f$.
\end{thm}
\begin{proof}
\begin{multline*}
\lim_{\mathcal{X}} f = \supfun{\mathrm{X}\circ f}\mathcal{X} =
\bigsqcup_{x\in\atoms\mathcal{X}} \supfun{\mathrm{X}\circ f}x = \\
\bigsqcup_{x\in\atoms\mathcal{X}} \lim x =
(\xlim_{\mathcal{X}}f)x.
\end{multline*}
\end{proof}
Let~$y$ be an arbitrary point of the space~$\Dst\mathrm{X}$. Consider
the constant function~$f$ whose value is this~$y$.
Then the first axiom above determines the $\xlim_{\mathcal{C}} f$
for every filter~$\mathcal{C}$.
I will denote $\xlim_{\mathcal{C}} f = \tau(y)$.
\begin{rem}
The above easily generalizes for~$y$ being a set of points.
\end{rem}
\begin{obvious}
$\tau$~is an injection, if $\Src\mathrm{X}$ is a non-empty set and
$\supfun{\mathrm{X}}$~is an injection on one-element sets.
\end{obvious}
\begin{cor}
$\tau$~is an injection, if $\Src\mathrm{X}$ is a non-empty set and
$\mathrm{X}=\mathrm{A}$ and $\mathrm{X}$~is Hausdorff.
\end{cor}
In other words, on Hausdorff topologies the set of singularities
with non-empty domains is an extension of the set of points~$\Dst\mathrm{X}$ (up to a bijection).
\chapter{Generalized limit}
\section{The definition of generalized limit}
In~\cite{volume-1-edition1} generalized limit is defined like the formula:
\begin{equation}\label{xlim1}
\xlim f = \setcond{ \mathrm{X}\circ f\circ \uparrow r}{r\in G}.
\end{equation}
We suppose:
Let $\mu$ and $\mathrm{X}$ be endofuncoids (on sets~$\Ob\mu$,~$\Ob\mathrm{X}$). Let $G$ be a transitive permutation
group on $\Ob\mu$.
We require that $\mu$ and every $r\in G$ commute, that is
\begin{equation}\label{commute}
\mu\circ\uparrow r=\uparrow r\circ\mu.
\end{equation}
We require for every $y\in\Ob\mathrm{X}$
\begin{equation}\label{lim-squares}
\mathrm{X}\sqsupseteq\supfun{\mathrm{X}}\uparrow\{y\}\times^{\mathsf{FCD}}\supfun{\mathrm{X}}\uparrow\{y\}.
\end{equation}
\begin{prop}
Formula (\ref{lim-squares}) follows from $\mathrm{X}\sqsupseteq\mathrm{X}\circ\mathrm{X}^{-1}$.
\end{prop}
\begin{proof}
Let $\mathrm{X}\sqsupseteq\mathrm{X}\circ\mathrm{X}^{-1}$. Then
\begin{align*}
\supfun{\mathrm{X}}\uparrow\{y\}\times^{\mathsf{FCD}}\supfun{\mathrm{X}}\uparrow\{y\} & =\\
\mathrm{X}\circ(\uparrow\{y\}\times^{\mathsf{FCD}}\uparrow\{y\})\circ\mathrm{X}^{-1} & =\\
\mathrm{X}\circ\uparrow(\{y\}\times\{y\})\circ\mathrm{X}^{-1} & \sqsubseteq\\
\mathrm{X}\circ 1\circ\mathrm{X}^{-1} & =\\
\mathrm{X}\circ\mathrm{X}^{-1} & \sqsubseteq\mathrm{X}.
\end{align*}
(Here~$1$ is the identity element of the semigroup of endofuncoids.)
\end{proof}
So we have (generalized) limits of arbitrary functions
acting from $\Ob\mu$ to $\Ob\mathrm{X}$. (The functions in consideration
are not required to be continuous.)
\begin{rem}
Most typically $G$ is the group of translations of some topological vector space\footnote{I remind that every Banach space, every normed space, and every Hilbert space is a vector topological space.}. So in particular we have defined limit of an arbitrary function acting from a vector topological space to a topological space.
\end{rem}
\section[Injection to generalized limits]{Injection from the set of points to the set of all generalized limits}
The function $\tau$ will define an injection from the set of points
of the space $\mathrm{X}$ (``numbers'', ``points'', or ``vectors'')
to the set of all (generalized) limits (i.e. values which $\xlim_{x}f$
may take).
\begin{defn}
\[ \tau(y)\eqdef\setcond{\supfun{\mu}\uparrow\{x\}\times^{\mathsf{FCD}}\supfun{\mathrm{X}}\uparrow\{y\}}{x\in D}. \]
\end{defn}
\begin{prop}
\[ \tau(y)=\setcond{(\supfun{\mu}\uparrow\{x\}\times^{\mathsf{FCD}}\supfun{\mathrm{X}}\uparrow\{y\})\circ\uparrow r}{r\in G} \]
for every (fixed) $x\in D$.\end{prop}
\begin{proof}
~
\begin{align*}
(\supfun{\mu}\uparrow\{x\}\times^{\mathsf{FCD}}\supfun{\mathrm{X}}\uparrow\{y\})\circ\uparrow r & =\\
\supfun{\uparrow r^{-1}}\supfun{\mu}\uparrow\{x\}\times^{\mathsf{FCD}}\supfun{\mathrm{X}}\uparrow\{y\} & =\\
\supfun{\mu}\supfun{\uparrow r^{-1}}\uparrow\{x\}\times^{\mathsf{FCD}}\supfun{\mathrm{X}}\uparrow\{y\} & =\\
\supfun{\mu}\uparrow\{r^{-1}x\}\times^{\mathsf{FCD}}\supfun{\mathrm{X}}\uparrow\{y\} & \in \\ \setcond{\supfun{\mu}\uparrow\{x\}\times^{\mathsf{FCD}}\supfun{\mathrm{X}}\uparrow\{y\}}{x\in D}.
\end{align*}
Reversely
\begin{multline*}
\supfun{\mu}\uparrow\{x\}\times^{\mathsf{FCD}}\supfun{\mathrm{X}}\uparrow\{y\}=\\(\supfun{\mu}\uparrow\{x\}\times^{\mathsf{FCD}}\supfun{\mathrm{X}}\uparrow\{y\})\circ\uparrow e
\end{multline*}
where $e$ is the identify element of $G$.\end{proof}
\begin{prop}
\[ \tau(y)=\xlim(\supfun{\mu}\uparrow\{x\}\times^{\mathsf{FCD}}\uparrow\{y\}) \]
(for every $x$). Informally: Every $\tau(y)$ is a generalized limit
of a constant function.
\end{prop}
\begin{proof}
~
\begin{align*}
\xlim(\supfun{\mu}\uparrow\{x\}\times^{\mathsf{FCD}}\uparrow\{y\}) & =\\
\setcond{\mathrm{X}\circ(\supfun{\mu}\uparrow\{x\}\times^{\mathsf{FCD}}\uparrow\{y\})\circ\uparrow r}{r\in G} & =\\
\setcond{(\supfun{\mu}\uparrow\{x\}\times^{\mathsf{FCD}}\supfun{\mathrm{X}}\uparrow\{y\})\circ\uparrow r}{r\in G} & =\tau(y).
\end{align*}
\end{proof}
\begin{cor}
The~$\tau$ defined in this section for generalized limits ``coincides'' with the~$\tau$ defined in the section about axiomatic generalized limits.
\end{cor}
In further we will use on of the definitions of continuity from~\cite{volume-1-edition1}:
\[ f\in\continuous(\mu,\mathrm{X})\Leftrightarrow
f\circ\mu \sqsubseteq \mathrm{X}\circ f \]
and other notation from the book.
\begin{thm}
If $f$ is a function and $f|_{\supfun{\mu}\uparrow\{x\}}\in\continuous(\mu,\mathrm{X})$
and $\supfun{\mu}\uparrow\{x\}\sqsupseteq\uparrow\{x\}$
then $\xlim_{x}f=\tau(fx)$.\end{thm}
\begin{proof}
$f|_{\supfun{\mu}\uparrow\{x\}}\circ\mu\sqsubseteq\mathrm{X}\circ f|_{\supfun{\mu}\uparrow\{x\}}\sqsubseteq\mathrm{X}\circ f$;
thus $\langle f\rangle\supfun{\mu}\uparrow\{x\}\sqsubseteq\supfun{\mathrm{X}}\supfun{f}\uparrow\{x\}$;
consequently we have
\begin{gather*}
\mathrm{X}\sqsupseteq\supfun{\mathrm{X}}\supfun{f}\uparrow\{x\}\times^{\mathsf{FCD}}\supfun{\mathrm{X}}\supfun{f}\uparrow\{x\}\sqsupseteq\\\supfun f\supfun{\mu}\uparrow\{x\}\times^{\mathsf{FCD}}\supfun{\mathrm{X}}\supfun{f}\uparrow\{x\}.\\
\begin{aligned}\mathrm{X}\circ f|_{\supfun{\mu}\uparrow\{x\}} & \sqsupseteq\\
(\supfun f\supfun{\mu}\uparrow\{x\}\times^{\mathsf{FCD}}\supfun{\mathrm{X}}\supfun{f}\uparrow\{x\})\circ f|_{\supfun{\mu}\uparrow\{x\}} & =\\
(f|_{\supfun{\mu}\uparrow\{x\}})^{-1}\supfun f\supfun{\mu}\uparrow\{x\}\times^{\mathsf{FCD}}\supfun{\mathrm{X}}\supfun{f}\uparrow\{x\} & \sqsupseteq\\
\supfun{\id_{\dom f|_{\supfun{\mu}\uparrow\{x\}}}^{\mathsf{FCD}}}\supfun{\mu}\uparrow\{x\}\times^{\mathsf{FCD}}\supfun{\mathrm{X}}\supfun{f}\uparrow\{x\} & \sqsupseteq\\
\dom f|_{\supfun{\mu}\uparrow\{x\}}\times^{\mathsf{FCD}}\supfun{\mathrm{X}}\supfun{f}\uparrow\{x\} & =\\
\supfun{\mu}\uparrow\{x\}\times^{\mathsf{FCD}}\supfun{\mathrm{X}}\supfun{f}\uparrow\{x\}.
\end{aligned}
\end{gather*}
$\im(\mathrm{X}\circ f|_{\supfun{\mu}\uparrow\{x\}})=\supfun{\mathrm{X}}\supfun{f}\uparrow\{x\}$;
\begin{align*}
\mathrm{X}\circ f|_{\supfun{\mu}\uparrow\{x\}} & \sqsubseteq\\
\supfun{\mu}\uparrow\{x\}\times^{\mathsf{FCD}}\im(\mathrm{X}\circ f|_{\supfun{\mu}\uparrow\{x\}}) & =\\
\supfun{\mu}\uparrow\{x\}\times^{\mathsf{FCD}}\supfun{\mathrm{X}}\supfun{f}\uparrow\{x\}.
\end{align*}
So $\mathrm{X}\circ f|_{\supfun{\mu}\uparrow\{x\}}=\supfun{\mu}\uparrow\{x\}\times^{\mathsf{FCD}}\supfun{\mathrm{X}}\supfun{f}\uparrow\{x\}$.
Thus
\begin{multline*}
\xlim_{x}f= \\ \setcond{(\supfun{\mu}\uparrow\{x\}\times^{\mathsf{FCD}}\supfun{\mathrm{X}}\supfun{f}\uparrow\{x\})\circ\uparrow r}{r\in G}= \\ \tau(fx).
\end{multline*}
\end{proof}
\begin{rem}
Without the requirement of $\supfun{\mu}\uparrow\{x\}\sqsupseteq\uparrow\{x\}$
the last theorem would not work in the case of removable singularity.\end{rem}
\begin{thm}
Let $\mathrm{X}\sqsubseteq\mathrm{X}\circ\mathrm{X}$. If $f|_{\supfun{\mu}\uparrow\{x\}}\overset{\mathrm{X}}{\rightarrow}\uparrow\{y\}$
then $\xlim_{x}f=\tau(y)$.\end{thm}
\begin{proof}
$\im f|_{\supfun{\mu}\uparrow\{x\}}\sqsubseteq\supfun{\mathrm{X}}\uparrow\{y\}$;
$\supfun f\supfun{\mu}\uparrow\{x\}\sqsubseteq\supfun{\mathrm{X}}\uparrow\{y\}$;
\begin{align*}
\mathrm{X}\circ f|_{\supfun{\mu}\uparrow\{x\}} & \sqsupseteq\\
(\supfun{\mathrm{X}}\uparrow\{y\}\times^{\mathsf{FCD}}\supfun{\mathrm{X}}\uparrow\{y\})\circ f|_{\supfun{\mu}\uparrow\{x\}} & =\\
\supfun{(f|_{\supfun{\mu}\uparrow\{x\}})^{-1}}\supfun{\mathrm{X}}\uparrow\{y\}\times^{\mathsf{FCD}}\supfun{\mathrm{X}}\uparrow\{y\} & =\\
\supfun{\id_{\supfun{\mu}\uparrow\{x\}}^{\mathsf{FCD}}\circ f^{-1}}\supfun{\mathrm{X}}\uparrow\{y\}\times^{\mathsf{FCD}}\supfun{\mathrm{X}}\uparrow\{y\} & \sqsupseteq\\
\supfun{\id_{\supfun{\mu}\uparrow\{x\}}^{\mathsf{FCD}}\circ f^{-1}}\supfun f\supfun{\mu}\uparrow\{x\}\times^{\mathsf{FCD}}\supfun{\mathrm{X}}\uparrow\{y\} & =\\
\supfun{\id_{\supfun{\mu}\uparrow\{x\}}^{\mathsf{FCD}}}\supfun{f^{-1}\circ f}\supfun{\mu}\uparrow\{x\}\times^{\mathsf{FCD}}\supfun{\mathrm{X}}\uparrow\{y\} & \sqsupseteq\\
\supfun{\id_{\supfun{\mu}\uparrow\{x\}}^{\mathsf{FCD}}}\supfun{\id_{\supfun{\mu}\uparrow\{x\}}^{\mathsf{FCD}}}\supfun{\mu}\uparrow\{x\}\times^{\mathsf{FCD}}\supfun{\mathrm{X}}\uparrow\{y\} & =\\
\supfun{\mu}\uparrow\{x\}\times^{\mathsf{FCD}}\supfun{\mathrm{X}}\uparrow\{y\}.
\end{align*}
On the other hand, \[ f|_{\supfun{\mu}\uparrow\{x\}}\sqsubseteq\supfun{\mu}\uparrow\{x\}\times^{\mathsf{FCD}}\supfun{\mathrm{X}}\uparrow\{y\}; \]
\begin{multline*}
\mathrm{X}\circ f|_{\supfun{\mu}\uparrow\{x\}}\sqsubseteq\supfun{\mu}\uparrow\{x\}\times^{\mathsf{FCD}}\supfun{\mathrm{X}}\supfun{\mathrm{X}}\uparrow\{y\}\sqsubseteq\\\supfun{\mu}\uparrow\{x\}\times^{\mathsf{FCD}}\supfun{\mathrm{X}}\uparrow\{y\}.
\end{multline*}
So $\mathrm{X}\circ f|_{\supfun{\mu}\uparrow\{x\}}=\supfun{\mu}\uparrow\{x\}\times^{\mathsf{FCD}}\supfun{\mathrm{X}}\uparrow\{y\}$.
\begin{multline*}
\xlim_{x}f=\setcond{\mathrm{X}\circ f|_{\supfun{\mu}\uparrow\{x\}}\circ\uparrow r}{r\in G}=\\ \setcond{(\supfun{\mu}\uparrow\{x\}\times^{\mathsf{FCD}}\supfun{\mathrm{X}}\uparrow\{y\})\circ\uparrow r}{r\in G}=\tau(y).
\end{multline*}
\end{proof}
\begin{cor}
If $\lim_{\supfun{\mu}\uparrow\{x\}}^{\mathrm{X}}f=y$ then $\xlim_{x}f=\tau(y)$ (provided that $\mathrm{X}\sqsubseteq\mathrm{X}\circ\mathrm{X}$).
\end{cor}
We have injective $\tau$ if $\supfun{\mathrm{X}}\uparrow\{y_{1}\}\sqcap\supfun{\mathrm{X}}\uparrow\{y_{2}\}=\bot^{\mathscr{F}(\Ob\mu)}$
for every distinct $y_{1},y_{2}\in\Ob\mathrm{X}$ that is if $\mathrm{X}$ is $T_{2}$-separable.
\section{Hausdorff and Kolmogorov funcoids}
\begin{defn}
A funcoid~$f$ is \emph{Kolmogorov} when
$\supfun{f}\uparrow\{x\}\ne\supfun{f}\uparrow\{y\}$ for every distinct points
$x,y\in\dom f$.
\end{defn}
\begin{defn}
\emph{Limit}~$\lim\mathcal{F}=x$ of a filter~$\mathcal{F}$
regarding funcoid~$f$ is such a point that $\supfun{f}\uparrow\{x\}\sqsupseteq\mathcal{F}$.
\end{defn}
\begin{defn}
\emph{Hausdorff} funcoid is such a funcoid that every proper
filter on its image has at most one limit.
\end{defn}
\begin{prop}
The following are pairwise equivalent for every funcoid~$f$:
\begin{enumerate}
\item\label{hd:eq-d} $f$~is Hausdorff.
\item\label{hd:eq-op}
$x\ne y\Rightarrow\supfun{f}\uparrow\{x\}\sqcap\supfun{f}\uparrow\{y\}=\bot$.
\end{enumerate}
\end{prop}
\begin{proof}
~
\begin{description}
\item[\ref{hd:eq-d}$\Rightarrow$\ref{hd:eq-op}]
If~\ref{hd:eq-op} does not hold,
then there exist distinct points~$x$ and~$y$ such that
$\supfun{f}\uparrow\{x\}\sqcap\supfun{f}\uparrow\{y\}\ne\bot$.
So~$x$ and~$y$ are both limit points of
$\supfun{f}\uparrow\{x\}\sqcap\supfun{f}\uparrow\{y\}$, and thus~$f$ is not
Hausdorff.
\item[\ref{hd:eq-op}$\Rightarrow$\ref{hd:eq-d}]
Suppose~$\mathcal{F}$ is proper.
\begin{multline*}
\supfun{f}\uparrow\{x\}\sqsupseteq\mathcal{F}\land
\supfun{f}\uparrow\{y\}\sqsupseteq\mathcal{F}\Rightarrow \\
\supfun{f}\uparrow\{x\}\sqcap\supfun{f}\uparrow\{y\}\ne\bot \Rightarrow x=y.
\end{multline*}
\end{description}
\end{proof}
\begin{cor}
Every entirely defined Hausdorff funcoid is Kolmogorov.
\end{cor}
\begin{rem}
It is enough to be ``almost entirely defined'' (having nonempty
value everywhere except of one point).
\end{rem}
\begin{obvious}
For a complete funcoid induced by a topological space this
coincides with the traditional definition of a Hausdorff
topological space.
\end{obvious}
\chapter{Generalized limit vs axiomatic generalized limit}
I will call \emph{singularities} the set of generalized limits of the form $\xlim_{\supfun{\mu}\uparrow\{x\}}f$ where $f$~is an entirely defined funcoid and $x$~ranges all points of~$\Ob\mu$.
I will call \emph{axiomatic singularities} the set of axiomatic generalized limits of the form $\xlim_{\supfun{\mu}\uparrow\{x\}}f$ where $f$~is an entirely defined funcoid and $x$~ranges all points of~$\Ob\mu$.
Switching back and forth between generalized limits and what I call $F$-singularities:
\begin{gather*}
\Phi f =\setcond{(\dom F, F)}{F \in f};\\
\Psi f = \im f.
\end{gather*}
\begin{prop}
Let the funcoid~$\mu$ is Kolmogorov and~$\mathrm{X}$ is entirely defined. Then $\Phi$ is an injection from the set of singularities to the set of monovalued functions.
\end{prop}
\begin{proof}
That it's an injection is obvious.
We need to prove that $\dom F_0\ne\dom F_1$ for each~$F_0,F_1\in f$ such that $F_0\ne F_1$.
Really, $F_0=\mathrm{X}\circ f|_{\supfun{\mu}\uparrow\{x_0\}}\circ\uparrow r_0$ for $x_0\in\Ob\mu$, $r_0\in G$.
We have $\dom F_0 = \dom f|_{\supfun{\mu}\uparrow\{x_0\}}=\supfun{\mu}\uparrow\{x_0\}$. Similarly $\dom F_1=\supfun{\mu}\uparrow\{x_1\}$ for some $x_1\in\Ob\mu$.
Thus $\dom F_0\ne\dom F_1$ because otherwise $x_0=x_1$ and so $r_0\ne r_1$,
\begin{multline*}
\dom F_0=\supfun{\uparrow r_0^{-1}}\supfun{\mu}\uparrow\{x_0\}=\\\supfun{\mu}\supfun{\uparrow r_0^{-1}}\uparrow\{x_0\}\ne\\\text{(Kolmogorov property)}\ne\\\supfun{\mu}\supfun{\uparrow r_1^{-1}}\{x_0\}=\\\supfun{\uparrow r_1^{-1}}\supfun{\mu}\{x_0\}=\dom F_1,
\end{multline*}
contradiction.
It remains to prove that $(f,\mathcal{X})\mapsto\Phi(\xlim_{\mathcal{X}} f)$ conforms to the axioms.
The second axiom is obvious.
It remains to prove that
\[ \supfun{\Phi(\xlim_{\mathcal{X}} f)}\mathcal{C} = \lim_{\mathcal{C}}f. \]
Really, $\Phi(\xlim_{\mathcal{X}} f)$ is equal to an $F\in\xlim_{\mathcal{X}} f$ such that $\dom F=\mathcal{X}$.
So $F=\mathrm{X}\circ f$.
\[ \supfun{\Phi(\xlim_{\mathcal{X}} f)}\mathcal{C} =
\supfun{\mathrm{X}\circ f}\mathcal{C} =
\supfun{\mathrm{X}\circ f}\mathcal{C} =
\lim_{\mathcal{C}}f. \]
\end{proof}
\begin{thm}
The following are mutually inverse bijections between
generalized limits and axiomatic generalized limits on a filter~$\mathcal{X}$ such that $\supfun{r}\mathcal{X}\asymp\mathcal{X}$ for all $r\in G\setminus\{e\}$:
\begin{enumerate}
\item\label{corr-gl-agl} Let~$y$ be a generalized limit. The corresponding axiomatic
generalized limit maps~$\mathcal{C}$ to $\supfun{f}\mathcal{C}$ whenever $f\in y$ and $\mathcal{C}\sqsubseteq\dom f$ and is undefined if there is no such~$f$. (Remark: obviously $y\ne\emptyset$.)
\item\label{corr-agl-gl} Let~$u$ be an axiomatic generalized limit. The corresponding generalized limit~$y$ is a set of funcoids (of suitable source and destination) such that
\[q\in y \Leftrightarrow \supfun{q}\mathcal{C}=\begin{cases}
u\mathcal{C}&\text{if }\mathcal{C}\in\dom u;\\
\emptyset&\text{otherwise}.
\end{cases}
\]
\end{enumerate}
\end{thm}
\begin{proof}
First, we need to prove that the mapping from~$\mathcal{C}$ to~$\supfun{f}\mathcal{C}$ is monovalued. For $\mathcal{C}=\emptyset$ it's obvious. It's enough to show that $f_0=f_1$ if $f_0,f_1\in y$ and $\mathcal{C}\sqsubseteq\dom f_0\land\mathcal{C}\sqsubseteq\dom f_1$. But for $\mathcal{C}\ne\emptyset$ it follows from the fact that $\dom f_0\asymp\dom f_1$ for $f_0\ne f_1$ as directly follow from theorem conditions.
Next we need to show that our functions are mutually inverse.
Let~$y_0$ be a generalized limit. Let~$u$ be the axiomatic generalized limit corresponding to it by~\ref{corr-gl-agl}. Let $y_1$ be the generalized limit corresponding to it by~\ref{corr-agl-gl}. Then
\[q\in y_1 \Leftrightarrow \forall\mathcal{C}:\supfun{q}\mathcal{C}=\begin{cases}
\supfun{f}\mathcal{C}&\text{if }\mathcal{C}\sqsubseteq\dom f;\\
\emptyset&\text{otherwise};
\end{cases} \Leftrightarrow q=f
\]
for some $f\in y_0$. That is, if $q\in y_1$ then $q=f$ for some $f\in y_0$ and if $q=f$ for some $f\in y_0$ then $f\in y_1$. So $y_0=y_1$.
Let now $u_0$ be an axiomatic generalized limit. Let~$y$ be the generalized limit corresponding to it by by~\ref{corr-agl-gl}. Let $u_1$ be the axiomatic generalized limit corresponding to it by~\ref{corr-gl-agl}. Then~$u_1$ maps~$\mathcal{C}$ to $\supfun{f}\mathcal{C}$ whenever $f\in y$ that is whenever
\[\supfun{f}\mathcal{C}=\begin{cases}
u_0\mathcal{C}&\text{if }\mathcal{C}\in\dom u_0;\\
\emptyset&\text{otherwise}.
\end{cases}
\] and $\mathcal{C}\sqsubseteq\dom f$ and it undefined if there is no such~$f$.
In other words, $u_1$ maps~$\mathcal{C}$ to $u_0\mathcal{C}$ if~$\mathcal{C}\in\dom u_0$ (the case ``otherwise'' is not to be considered because $\dom u_1=\dom u_0$). So $u_1=u_0$.
\end{proof}
So if we define a function on the set of functions whose values are funcoids, we automatically define (as this injection preimage) a function on the set of singularities. Let's do it.
Let $\varphi$ be a (possibly multivalued) multiargument function.
\chapter{Operations on generalized limits}
\section{Applying functions to functions}
As usually in calculus:
Let~$\varphi$ is an arbitrary multiargument function.
\begin{defn}
$(\varphi f) x = \varphi (\lambda i \in D : f_i x)$
for an indexed (by $\dom\varphi$) family $f$ of functions of the same domain $D$ to domains of arguments of~$\varphi$.
\end{defn}
\section{Applying functions to sets}
\begin{defn}
$\varphi X = \rsupfun{\varphi} \prod X$ for a family $X$ of sets, where each $X_i$ is an element of the domain of $i$-th element of~$\varphi$.
\end{defn}
\begin{obvious}
$\varphi (\lambda i \in D : \{ x_0 \}) = \{ \varphi x \}$.
\end{obvious}
\section{Applying functions to filters}
\begin{defn}
$\varphi x = \supfun{\varphi} \prod^{\reloids}_{X \in \prod x} X$ for a
family $x$ of atomic filters.
\end{defn}
\begin{prop}
$\varphi$ can be continued to a pointfree funcoid.
\end{prop}
\begin{proof}
Need to prove (theorem 1650 in~\cite{volume-1-edition1})
\[ \supfun{\varphi} \prod^{\reloids}_{X \in \prod a} X \sqsubseteq \bigsqcap
\setcond{\bigsqcup \rsupfun{x \mapsto \supfun{\varphi}
\prod^{\reloids}_{X \in \prod x} X} \atoms \mathcal{X}}{\mathcal{X} \in
\up a} . \]
Really,
\begin{multline*}
\bigsqcup \rsupfun{x \mapsto \supfun{\varphi} \prod^{\reloids}_{X \in
\prod x} X} \atoms \mathcal{X} =\\ \supfun{\varphi} \bigsqcup \rsupfun{x
\mapsto \prod^{\reloids}_{X \in \prod x} X} \atoms \mathcal{X} .
\end{multline*}
But by theorem 1875 in~\cite{volume-1-edition1}:
\[ \bigsqcup \rsupfun{x \mapsto \prod^{\reloids}_{X \in \prod x} X}
\atoms \mathcal{X} = \prod^{\reloids}_{X \in \prod \mathcal{X}}
X . \]
So, $\bigsqcup \rsupfun{x \mapsto \prod^{\reloids}_{X \in \prod a} X}
\atoms \mathcal{X} \sqsupseteq \prod^{\reloids}_{X \in \prod a}
\mathcal{X}$. Thus follows the thesis.
\end{proof}
\section{Applying functions to funcoids}
\begin{defn}
For a family $f$ of funcoids having a common source set and filter on this set
$\mathcal{X}$
\[(\varphi f) \mathcal{X} = \varphi \left( \lambda i \in \dom f :
\supfun{f_i} \mathcal{X} \right) .\]
\end{defn}
\begin{prop}
It is a component of a funcoid.
\end{prop}
\begin{proof}
As composition of two components of pointfree funcoids:
$\varphi (f_0, \ldots, f_n) = \varphi \circ \left( \mathcal{X} \mapsto
\left( \lambda i \in \dom f : \supfun{f_i} \mathcal{X} \right)
\right)$.
Note that $\mathcal{X} \mapsto \left( \lambda i \in \dom f :
\supfun{f_i} \mathcal{X} \right)$ is a component of a pointfree funcoid because
\begin{multline*}
\mathcal{Y} \nasymp \left( \lambda i \in \dom f : \supfun{f_i}
\mathcal{X} \right) \Leftrightarrow\\ \exists i \in \dom f :
\mathcal{Y}_i \nasymp \supfun{f_i} \mathcal{X} \Leftrightarrow\\ \exists i \in
\dom f : \mathcal{X} \nasymp \supfun{f_i^{- 1}} \mathcal{Y}_i
\Leftrightarrow\\ \mathcal{X} \nasymp \left( \lambda i \in \dom f :
\supfun{f_i^{- 1}} \mathcal{Y}_i \right) =\\ \mathcal{X} \nasymp \left(
\mathcal{Y} \mapsto \left( \lambda i \in \dom f : \supfun{f_i^{- 1}}
\mathcal{Y}_i \right) \right) \mathcal{Y}.
\end{multline*}
\end{proof}
\begin{prop}
Applying to funcoids is consistent with applying to functions.
\end{prop}
\begin{proof}
Consider values on principal atomic filters.
\end{proof}
\section{Applying to axiomatic generalized limits}
\begin{defn}
Define applying finitary (multivalued) functions $\varphi$ to and indexed
family $x$ of axiomatic generalized limits of the same domain $D$ (and probably different destination sets) as
\[ \varphi x = \supfun{\mathrm{X}} \circ \varphi \circ x. \]
(Here $\varphi$ is considered as a function on filters, $x$~is considered as a function on indexed famililies of functions.)
\end{defn}
\begin{prop}
If $\mathrm{X} \circ \mathrm{X} \sqsupseteq \mathrm{X}$ and reflexive and
$\mathrm{X}$ commutes with $\varphi$ in some argument $k$, then
\[ \varphi x = \phi \circ x . \]
\end{prop}
\begin{proof}
$\varphi \circ x \sqsubseteq \varphi x$ because $\mathrm{X}$ is reflexive.
$x_i = \supfun{\mathrm{X} \circ f_i}$ for some funcoid $f_i$.
$x_i \mathcal{X} = \supfun{\mathrm{X}} \supfun{f_i } \mathcal{X}$.
\begin{multline*}\varphi \circ x =\\ \mathcal{C} \mapsto \varphi (\lambda i \in
\dom x : \supfun{\mathrm{X}} \supfun{f_i} \mathcal{C}) =\\ \mathcal{C} \mapsto \supfun{\mathrm{X}}\circ \varphi \circ (\lambda i \in
\dom x : \supfun{\mathrm{X}} \supfun{f_i} \mathcal{C}) =\\
\supfun{\mathrm{X}}\varphi(\mathcal{C} \mapsto \lambda i \in
\dom x : \supfun{\mathrm{X}} \supfun{f_i} \mathcal{C}) \sqsupseteq\\
\varphi \left( \mathcal{C} \mapsto \lambda i \in \dom x : \left\{\begin{array}{ll}
\supfun{\mathrm{X}} \supfun{f_i} \mathcal{C} & \text{if } i \neq k\\
\supfun{\mathrm{X}} \supfun{\mathrm{X}} \supfun{f_i} \mathcal{C} & \text{if } i =
k
\end{array}\right. \right) \sqsupseteq\\ \varphi \left( \mathcal{C} \mapsto \lambda i \in
\dom x : \supfun{\mathrm{X}} \supfun{f_i} \mathcal{C} \right) =\\ \supfun{\mathrm{X}} \circ \varphi \circ \left( \mathcal{C} \mapsto \lambda i \in
\dom x : \supfun{\mathrm{X}} \supfun{f_i} \mathcal{C} \right) = \\ \mathcal{C} \mapsto \supfun{\mathrm{X}} \varphi \left( \lambda i \in
\dom x : \supfun{\mathrm{X}} \supfun{f_i} \mathcal{C} \right) =
\supfun{\mathrm{X}}\circ\varphi\circ x = \varphi x.\end{multline*}
\end{proof}
\begin{prop}
The conditions of the previous propositions hold for~$\mathrm{A}$ and for~$\mathrm{L}$ if they hold for~$d$. More exactly:
Let $d$ is transitive ($d \circ d \sqsubseteq d$) and reflexive. Then:
\begin{enumerate}
\item\label{a-rt} Let $\mathrm{A}$ is transitive ($\mathrm{A} \circ \mathrm{A} \sqsubseteq \mathrm{A}$) and reflexive.
\item\label{l-rt} Let $\mathrm{L}$ is transitive ($\mathrm{L} \circ \mathrm{L} \sqsubseteq \mathrm{L}$) and reflexive.
\end{enumerate}
\end{prop}
\begin{proof}
~
\begin{disorder}
\item[\ref{a-rt}] Reflexivity is obvious. Prove that $\mathrm{A} \circ \mathrm{A} \sqsubseteq \mathrm{A}$. Really,
$\mathrm{A} \circ \mathrm{A} = (c\circ d^{-1})\circ(c\circ d^{-1}) \sqsubseteq c\circ d^{-1}\circ d^{-1} \sqsubseteq c\circ d^{-1} = \mathrm{A}$ where $c$ is the ``core part'' funcoid.
\item[\ref{l-rt}] Reflexivity is obvious. Prove that $\mathrm{L} \circ \mathrm{L} \sqsubseteq \mathrm{L}$. Really,
\begin{multline*}
\supfun{L}\supfun{L}\mathcal{A}=
\supfun{L}\setcond{x}{\rsupfun{d}\{x\}\sqsupseteq\mathcal{A}}=
\supfun{L}\setcond{x}{\rsupfun{d}\{x\}\nasymp\mathcal{A}}= \\
\supfun{L}\setcond{x}{\{x\}\nasymp\supfun{d^{-1}}\mathcal{A}}
\sqsubseteq
\supfun{L}\supfun{d^{-1}}\mathcal{A} = \\
\setcond{x}{\rsupfun{d}\{x\}\sqsupseteq\supfun{d^{-1}}\mathcal{A}}\sqsubseteq
\setcond{x}{\rsupfun{d}\{x\}\sqsupseteq\mathcal{A}} =
\supfun{L}\mathcal{A}.
\end{multline*}
\end{disorder}
\end{proof}
\begin{defn}
Applying to singularities: $\varphi x = \Psi f (\Phi \circ x)$ (applicable only if limits $x_i$ are taken on filters that are
equal up to $\supfun{r}$ for $r \in G$).
\end{defn}
\begin{thm}
If $\varphi$ is continuous regarding $\mathrm{X}$ in each argument and $\dom f_0
= \cdots = \dom f_n = \Delta$ and $\mathrm{X} \circ \mathrm{X} \sqsubseteq \mathrm{X}$, then for singularities
\[ \lim \varphi (f_0, \ldots, f_n) = \varphi (\lim f_0, \ldots, \lim f_n). \]
\end{thm}
\begin{proof}
We will prove instead \[ \varphi (\Phi \lim f_0, \ldots, \Phi \lim f_n) = \Phi
\lim \varphi (f_0, \ldots, f_n). \]
Equivalently transforming:
\begin{multline*}
\lambda \Delta \in D : \supfun{\mathrm{X}} \varphi ((\Phi \lim f_0) \Delta,
\ldots, (\Phi \lim f_n) \Delta) =\\ \Phi \lim \varphi (f_0, \ldots, f_n);
\end{multline*}
$\mathrm{X} \circ \varphi (\mathrm{X} \circ f_0 \circ r, \ldots, \mathrm{X} \circ f_n \circ r) =
\mathrm{X} \circ \varphi (f_0, \ldots, f_n) \circ r$;
$\mathrm{X} \circ \varphi (\mathrm{X} \circ f_0, \ldots, \mathrm{X} \circ f_n) = \mathrm{X} \circ
\varphi (f_0, \ldots, f_n)$;
Obviously, $\mathrm{X} \circ \varphi (\mathrm{X} \circ f_0, \ldots, \mathrm{X} \circ f_n)
\sqsupseteq \mathrm{X} \circ \varphi (f_0, \ldots, f_n)$.
Reversely, applying continuity $n + 1$ times, we get:
\begin{multline*}
\mathrm{X} \circ \varphi (\mathrm{X} \circ f_0, \ldots, \mathrm{X} \circ f_n) \sqsubseteq\\
\underset{n + 1 \text{ times}}{\underbrace{\mathrm{X} \circ \mathrm{X}}} \circ \varphi
(f_0, \ldots, f_n) \sqsubseteq\\ \mathrm{X} \circ \varphi (f_0, \ldots, f_n) .
\end{multline*}
So $\mathrm{X} \circ \varphi (\mathrm{X} \circ f_0, \ldots, \mathrm{X} \circ f_n) = \mathrm{X} \circ
\varphi (f_0, \ldots, f_n)$.
\end{proof}
\begin{prop}
If $\varphi$ is continuous regarding~$\mathrm{X}$ in each argument, then
\begin{multline*}
\varphi (\lim f_0 |_{\Delta}, \ldots, \lim f_n |_{\Delta}) =\\ \lim \varphi
(f_0 |_{\Delta}, \ldots, f_n |_{\Delta}) =\\ \lim_{\Delta} \varphi (f_0,
\ldots, f_n)
\end{multline*}
for funcoids $f_0$, ..., $f_n$,
\end{prop}
\begin{proof}
The first equality follows from the above.
It remains to prove \[ \varphi (f_0 |_{\Delta}, \ldots, f_n |_{\Delta}) =
(\varphi (f_0, \ldots, f_n)) |_{\Delta}. \]
Equivalently transforming,
$\supfun{\varphi (f_0 |_{\Delta}, \ldots, f_n |_{\Delta})} \mathcal{X} =
\supfun{(\varphi (f_0, \ldots, f_n)) |_{\Delta}} \mathcal{X}$;
\begin{multline*}
\varphi \left( \supfun{f_0 |_{\Delta}} \mathcal{X}, \ldots, \supfun{f_n
|_{\Delta}} \mathcal{X} \right) =\\ \supfun{\varphi (f_0, \ldots, f_n)}
(\Delta \sqcap \mathcal{X});
\end{multline*}
\begin{multline*}
\varphi \left( \supfun{f_0} (\Delta \sqcap \mathcal{X}), \ldots,
\supfun{f_n} (\Delta \sqcap \mathcal{X}) \right) =\\ \varphi \left(
\supfun{f_0} (\Delta \sqcap \mathcal{X}), \ldots, \supfun{f_n} (\Delta
\sqcap \mathcal{X}) \right) (\Delta \sqcap \mathcal{X}).
\end{multline*}
\end{proof}
\begin{thm}
Let~$\Delta$ be a filter on~$\mu$.
Let~$S$ be the set of all functions $p\in\mathsf{FCD}(\Ob\mu,\Ob\mathrm{X})$
such that $\dom p=\Delta$.
Let $f$, $g$ be
finitary multiargument functions on $\Ob\mathrm{X}$.
Let $J$ be an index
set. Let $k \in J^{\operatorname{dom} P}$, $l \in J^{\operatorname{dom} Q}$. Then
\begin{multline*}
\forall x \in (\Ob\mathrm{X})^J : f (\lambda i \in \operatorname{dom} f : x_{k_i}) =\\ g (\lambda
i \in \operatorname{dom} g : x_{l_i})
\end{multline*}
implies
\begin{multline*}
\forall x \in (\rsupfun{\lim}S)^J : f (\lambda i \in
\operatorname{dom} f : x_{k_i}) =\\ g (\lambda i \in \operatorname{dom} g : x_{l_i}) ,
\end{multline*}
provided that~$f$ and~$g$ are continuous regarding~$\mathrm{X}$ in each argument.
\end{thm}
\begin{rem}
This theorem implies that if $\Ob\mathrm{X}$ is a group, ring, vector space, etc., then $\rsupfun{\lim}S$ is also accordingly a group, ring, vector space, etc.
\end{rem}
\begin{proof}
Every $x_{j_i} = \lim_{\Delta} t$ for some function~$t$.
By proved above, \[ f (\lambda i \in \operatorname{dom} f : x_{k_i}) = \lim_{\Delta} f(\lambda i \in \operatorname{dom} f : t_{k_i}). \]
It's enough to prove \[ f(\lambda i \in \operatorname{dom} f : t_{k_i}) = g(\lambda i \in \operatorname{dom} f : t_{l_i}). \]
But that's trivial.
\end{proof}
\begin{conjecture}
The above theorem stays true if $S$~is instead a set of limits of monovalued funcoids.
\end{conjecture}
\section{Applications}
Having generalized limit, we can in an obvious way define derivative of an arbitrary function.
We can also define definite integral of an arbitrary function (I remind that integral is just a limit on a certain filter). The result may differ dependently on whether we use Riemann and Lebesgue integrals.
From above it follows that my generalized derivatives and integrals are linear operators.
\chapter{Equivalence of different generalized limits}
\begin{prop}
Axiomatic generalized limits of monovalued funcoids for
$\mathrm{X}=\mathrm{A}$ and $\mathrm{X}=\mathrm{L}$ coincide on ultrafilers.
\end{prop}
\begin{proof}
Follow from the facts that the image of an ultrafilter by an atomic funcoid is an ultrafilter and that $\mathrm{L}$ and $\mathrm{A}$ coincide on ultrafilters.
\end{proof}
\begin{question}
Under which conditions the algebras of all functions on the set of of all possible values of axiomatic generalized limits between two fixed sets~$A$ and~$B$ induced (as described above) by functions $A\to B$ for generalized limits are pairwise isomorphic (with an obvious bijection) for:
\begin{enumerate}
\item $\mathrm{X}=\mathrm{A}$;
\item $\mathrm{X}=\mathrm{L}$.
\end{enumerate}
Moreover, if $d$ is $T_2$-separable, they are also isomorphic to the case
$\mathrm{X}=d\circ d^{-1}$ (remark: for a pretopology~$d$, it's the proximity of two sets being near if they have intersecting closures). The isomorphism is composing every element~$F$ of a value of an axiomatic generalized limit with~$d$ on the left ($F\mapsto d\circ F$).
\end{question}
Also let question how to generalize the above for functions~$\varphi$ between \emph{different} kinds of singularities is also not yet settled.
\chapter{Hierarchy of singularities}
Above we have defined (having fixed endofuncoids~$\mu$ and~$\mathrm{X}$) for every set of ``points''~$R=\Ob\mathrm{X}$ its set of singularities $\operatorname{SNG}(R)$.
We can further consider
\[
\operatorname{SNG}(\operatorname{SNG}(R)), \operatorname{SNG}(\operatorname{SNG}(\operatorname{SNG}(R))),
\]
etc.
If we try to put our generalized derivative into say the differential equation $h\circ f'=g\circ f$ on real numbers, we have a trouble: The left part belongs to the set of functions to $\operatorname{SNG}(Y)$ and the right part to the set of functions to~$Y$, where $Y$ is the set of solutions. How to equate them? If $Y$~would be just~$\mathbb{R}$ we would take the left part of the type $\operatorname{SNG}(\mathbb{R})$ and equate them using the injection~$\tau$ defined above. But stop, it does not work: if the left part is of $\operatorname{SNG}(\mathbb{R})$ then the right part, too. So the left part would be $\operatorname{SNG}(\operatorname{SNG}(\mathbb{R}))$, etc.\ infinitely.
So we need to consider the entire set (\emph{supersingularities})
\[