-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchap-unfixed.tex
2223 lines (1908 loc) · 72.6 KB
/
chap-unfixed.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter{Unfixed categories}
\fxwarning{This is a draft not thoroughly checked for
errors.}
Unfixed categories like my other ideas is a great idea.
However, previously I thought it is also great for studying
funcoids and reloids, because unfixed funcoids is a
generalization of funcoids, etc.
Unfixed funcoids are not a so important generalization as I
imagined, because there is a simpler and yet more general
generalization of funcoids: Every $\Hom$-set of small funcoids
can be embedded into $\mathsf{FCD}\left(\bigcup\mathscr{U},\bigcup\mathscr{U}\right)$ where $\mathscr{U}$ is the Grothendieck universe. Thus in principle it would be enough to study the semigroup $\mathsf{FCD}\left(\bigcup\mathscr{U},\bigcup\mathscr{U}\right)$ rather than all categories of funcoids.
In this chapter I show how to embed one $\Hom$-set into another
$\Hom$-set, so this chapter is indeed important. But the topic
after which this chapter was titled, ``Unfixed categories'' is
not so much important for our book.
\section{Axiomatics for unfixed morphisms}
\begin{defn}
\label{unf-mor}
\emph{Category with restricted identities} is defined
axiomatically:
\emph{Restricted identity}~$\id^{\mathcal{C}(A,B)}_X$
and \emph{projection} $A\mapsto[A]$ are
described by the axioms:
\begin{enumerate}
\item $\mathcal{C}$~is a category with the set of
objects~$\mathfrak{Z}$;
\item every $\Hom$-set $\mathcal{C}(A,B)$ is a lattice;
\item $\mathfrak{Z}$~and~$\mathfrak{A}$~are lattices;
\item $A\to[A]$ is a lattice embedding
from $\mathfrak{Z}$ to $\mathfrak{A}$;
\item $\id^{\mathcal{C}(A,B)}_X\in\Hom_{\mathcal{C}}(A,B)$
whenever $\mathfrak{A}\ni X\sqsubseteq [A]\sqcap[B]$;
\item $\id^{\mathcal{C}(A,A)}_{[A]} = 1^{\mathcal{C}}_A$;
\item $\id^{\mathcal{C}(B,C)}_Y \circ \id^{\mathcal{C}(A,B)}_X = \id^{\mathcal{C}(A,C)}_{X\sqcap Y}$
whenever $\mathfrak{A}\ni X\sqsubseteq [A]\sqcap[B]$
and $\mathfrak{A}\ni Y\sqsubseteq [B]\sqcap[C]$;
\item $\forall A\in\mathfrak{A}\exists B\in\mathfrak{Z}:
A\sqsubseteq[B]$.
\end{enumerate}
For a \emph{partially ordered category with restricted identities} introduce additional axiom $X\sqsubseteq Y\Rightarrow
\id^{\mathcal{C}(A,B)}_X\sqsubseteq\id^{\mathcal{C}(A,B)}_Y$.
For \emph{dagger categories with restricted identities} introduce additional axiom
$\left(\id^{\mathcal{C}(A,B)}_X\right)^\dagger =
\id^{\mathcal{C}(B,A)}_X$.
\end{defn}
\begin{defn}
I call a category with restricted identities
\emph{injective} when the axiom $X\ne Y\Rightarrow
\id^{\mathcal{C}(A,B)}_X\ne\id^{\mathcal{C}(A,B)}_Y$
whenever $X,Y\sqsubseteq[A]\sqcap[B]$ holds.
\end{defn}
\begin{defn}
Define $\mathcal{E}_{\mathcal{C}}^{A,B} =
\id^{\mathcal{C}(A,B)}_{[A]\sqcap[B]}$.
\end{defn}
\begin{prop}\label{e-mono-epi}
~
\begin{enumerate}
\item If $[A]\sqsubseteq[B]$ then $\mathcal{E}_{\mathcal{C}}^{A,B}$ is a
monomorphism.
\item If $[A]\sqsupseteq[B]$ then $\mathcal{E}_{\mathcal{C}}^{A,B}$ is an
epimorphism.
\end{enumerate}
\end{prop}
\begin{proof}
We'll prove only the first as the second is dual.
Let $\mathcal{E}_{\mathcal{C}}^{A,B} \circ f = \mathcal{E}_{\mathcal{C}}^{A,B} \circ g$. Then
$\mathcal{E}_{\mathcal{C}}^{B,A} \circ \mathcal{E}_{\mathcal{C}}^{A,B}
\circ f = \mathcal{E}_{\mathcal{C}}^{B,A} \circ \mathcal{E}_{\mathcal{C}}^{A,B} \circ g$;
$1^A \circ f = 1^A \circ g$; $f = g$.
\end{proof}
\begin{prop}
$\mathcal{E}_{\mathcal{C}}^{B,C} \circ \mathcal{E}_{\mathcal{C}}^{A,B} = \mathcal{E}_{\mathcal{C}}^{A,C}$
if $B \sqsupseteq A \sqcap C$ (for every sets $A$, $B$, $C$).
\end{prop}
\begin{proof}
$\mathcal{E}_{\mathcal{C}}^{B,C} \circ \mathcal{E}_{\mathcal{C}}^{A,B} = \mathcal{E}_{\mathcal{C}}^{A,C}$
is equivalent to:
$\id^{\mathcal{C}(B,C)}_{B \sqcap C} \circ \id^{\mathcal{C}(A,B)}_{A \sqcap B} = \id^{\mathcal{C}(A,C)}_{A \sqcap C}$ what is obviously true.
\end{proof}
\begin{defn}
$\id^{\mathcal{C}(A)}_X = \id^{\mathcal{C}(A,A)}_{[X]}$.
\end{defn}
\section{Rectangular embedding-restriction}
\begin{defn}
$\iota_{B_0, B_1} f = \mathcal{E}_{\mathcal{C}}^{\Dst f,B_1} \circ f \circ
\mathcal{E}_{\mathcal{C}}^{B_0,\Src f}$ for $f \in
\Hom_{\mathcal{C}} (A_0 , A_1)$.
\end{defn}
For brevity $\iota_B f = \iota_{B, B} f$.
\begin{obvious}
$\iota_{B_0, B_1} f\sqsubseteq f$.
\end{obvious}
\begin{prop}
$\iota_{\Src f, \Dst f} f = f$.
\end{prop}
\begin{proof}
~
\begin{multline*}
\iota_{\Src f, \Dst f} f = \\\mathcal{E}_{\mathcal{C}}^{\Dst f,\Dst f} \circ f \circ \mathcal{E}_\mathcal{C}^{\Src f,\Src f} =\\
1_{\mathcal{C}}^{\Dst f} \circ f \circ 1_{\mathcal{C}}^{\Src f} = f.
\end{multline*}
\end{proof}
\begin{prop}
The function $\iota_{B_0, B_1} |_{f \in \Hom_{\mathcal{C}} (A_0 ,
A_1)}$ is injective, provided that
$A_0\sqsubseteq B_0$ and $A_1\sqsubseteq B_1$.
\end{prop}
\begin{proof}
Because $\mathcal{E}_{\mathcal{C}}^{A_1,B_1}$ is a monomorphism and $\mathcal{E}_{\mathcal{C}}^{A_0,B_0}$ is an epimorphism.
\end{proof}
\begin{cor}\label{iota-emb}
The function $\iota_{B_0, B_1} |_{f \in \Hom_{\mathcal{C}} (A_0 ,
A_1)}$ is order embedding if $A_0 \sqsubseteq B_0 \wedge A_1 \sqsubseteq B_1$ for ordered categories
with restricted identities.
\end{cor}
\section{Image and domain}
Let define that
$\mathscr{S}\mathcal{A}=\setcond{K\in\mathfrak{Z}}{
\exists X\in\mathcal{A}:X\subseteq K}$
holds not only for filters but for any set~$\mathcal{A}$ of
sets.
\begin{obvious}
$\mathscr{S}\mathcal{A}\supseteq\mathcal{A}$.
\end{obvious}
\begin{defn}
~
\begin{enumerate}
\item $\operatorname{IM} f = \setcond{Y \in \mathfrak{Z}}{\mathcal{E}_{\mathcal{C}}^{Y, \Dst f} \circ \mathcal{E}_{\mathcal{C}}^{\Dst f,
Y} \circ f = f}$;
\item $\operatorname{DOM} f = \setcond{X \in \mathfrak{Z}}{f\circ\mathcal{E}_{\mathcal{C}}^{\Src f, X} \circ \mathcal{E}_{\mathcal{C}}^{X, \Src f} = f}$.
\end{enumerate}
\end{defn}
\begin{obvious}
~
\begin{enumerate}
\item $\operatorname{IM} f = \setcond{Y \in \mathfrak{Z}}{\id^{\mathcal{C}(\Dst f,\Dst f)}_{[Y]\sqcap[\Dst f]} \circ f = f} = \setcond{Y \in \mathfrak{Z}}{\id^{\mathcal{C}(\Dst f)}_{Y\sqcap\Dst f} \circ f = f}$;
\item $\operatorname{DOM} f = \setcond{X \in \mathfrak{Z}}{f \circ \id^{\mathcal{C}(\Src f,\Src f)}_{[X]\sqcap[\Src f]} = f} = \setcond{X \in \mathfrak{Z}}{f \circ \id^{\mathcal{C}(\Src f,\Src f)}_{X\sqcap\Src f} = f}$.
\end{enumerate}
\end{obvious}
\begin{defn}
~
\begin{enumerate}
\item $\operatorname{Im} f = \setcond{Y\in\operatorname{IM} f}{Y\sqsubseteq\Dst f}$;
\item $\operatorname{Dom} f = \setcond{X\in\operatorname{DOM} f}{X\sqsubseteq\Src f}$.
\end{enumerate}
\end{defn}
\begin{prop}
~
\begin{enumerate}
\item $\operatorname{IM} f = \mathscr{S}\operatorname{Im} f$;
\item $\operatorname{DOM} f = \mathscr{S}\operatorname{Dom} f$;
\item $\operatorname{Im} f = \rsupfun{\Dst f\cap}\operatorname{IM} f$;
\item $\operatorname{Dom} f = \rsupfun{\Dst f\cap}\operatorname{DOM} f$.
\end{enumerate}
\end{prop}
\begin{proof}
$\operatorname{IM} f =
\setcond{Y \in \mathfrak{Z}}{\id^{\mathcal{C}(\Dst f,\Dst f)}_{[Y]\sqcap[\Dst f]} \circ f = f}$.
Suppose $Y\in\operatorname{IM}f$. Then take $Y'=Y\sqcap\Dst f$. We have $Y\sqsupseteq Y'$ and $Y'\in\operatorname{Im}f$. So $Y\in\mathscr{S}\operatorname{Im}f$. If $Y\in\mathscr{S}\operatorname{Im}f$ then $Y\in\operatorname{IM}f$ obviously.
So $\operatorname{IM} f = \mathscr{S}\operatorname{Im} f$.
$\rsupfun{\Dst f\cap}\operatorname{IM}f\subseteq
\operatorname{Im}f$ is obvious. If
$\operatorname{Im}f\subseteq\rsupfun{\Dst f\cap}\operatorname{IM}f$ is also obvious.
The rest follows from symmetry.
\end{proof}
\begin{conjecture}
$\operatorname{Im} f$ may be not a filter for an injective
category with restricted morphisms.
\end{conjecture}
\begin{prop}
$\operatorname{Dom}f =
\setcond{X\in\mathfrak{Z}}{X\sqsubseteq\Src f,
f\circ\id^{\mathcal{C}(\Dst f)}_X=f}$.
\end{prop}
\begin{proof}
$\operatorname{Dom}f =
\rsupfun{\Dst f\cap}
\setcond{X \in \mathfrak{Z}}{f \circ \id^{\mathcal{C}(\Src f,\Src f)}_{[X]\sqcap[\Src f]} = f}=
\setcond{X\in\mathfrak{Z}}{X\sqsubseteq\Src f,
f\circ\id^{\mathcal{C}(\Dst f)}_X=f}$.
\end{proof}
\begin{prop}\label{dst-in-im}
$\Dst f\in\operatorname{Im} f$; $\Src f\in\operatorname{Dom} f$ for every morphism~$f$ of a category with restricted
identities.
\end{prop}
\begin{proof}
Prove $\Dst f\in\operatorname{Im} f$ (the other is similar):
We need to prove that $\mathcal{E}_{\mathcal{C}}^{\Dst f, \Dst f} \circ \mathcal{E}_{\mathcal{C}}^{\Dst f,
\Dst f} \circ f = f$ what follows from
$\mathcal{E}_{\mathcal{C}}^{\Dst f, \Dst f} \circ \mathcal{E}_{\mathcal{C}}^{\Dst f, \Dst f} = 1^{\Dst f}$.
\end{proof}
\begin{prop}
$\operatorname{IM}f$, $\operatorname{Im}f$,
$\operatorname{DOM}f$, $\operatorname{Dom}f$
are upper sets.
\end{prop}
\begin{proof}
For $\operatorname{Im}f$, $\operatorname{Dom}f$ it follows
from the previous proposition.
For $\operatorname{IM}f$, $\operatorname{DOM}f$ it follows
from the thesis for
$\operatorname{Im}f$, $\operatorname{Dom}f$.
\end{proof}
\begin{defn}
~
\begin{enumerate}
\item An ordered category with restricted identities is
\emph{with ordered image} iff $f\sqsubseteq g\Rightarrow
\operatorname{IM}f\subseteq\operatorname{IM}g$.
\item An ordered category with restricted identities is
\emph{with ordered domain} iff $f\sqsubseteq g\Rightarrow
\operatorname{DOM}f\subseteq\operatorname{DOM}g$.
\item An ordered category with restricted identities is
\emph{with ordered domain and image} iff it is both
with ordered domain and with ordered image.
\end{enumerate}
\end{defn}
\begin{obvious}
~
\begin{enumerate}
\item An ordered category with restricted identities is
with ordered image iff $f\sqsubseteq g\Rightarrow
\operatorname{Im}f\subseteq\operatorname{Im}g$.
\item An ordered category with restricted identities is
with ordered domain iff $f\sqsubseteq g\Rightarrow
\operatorname{Dom}f\subseteq\operatorname{Dom}g$.
\item An ordered category with restricted identities is
with ordered domain and image iff it is both
with ordered domain and with ordered image.
\end{enumerate}
\end{obvious}
\begin{obvious}
~
\begin{enumerate}
\item For an ordered category~$\mathcal{C}$ with restricted identities
to be with ordered image it's enough that
$\id^{\mathcal{C}(\Dst f,\Dst f)}_{[X]}\circ f=f\land
g\sqsubseteq f\Rightarrow
\id^{\mathcal{C}(\Dst f,\Dst f)}_{[X]}\circ g=g$
for every parallel morphisms~$f$ and $g$ and
$\mathfrak{Z}\ni X\sqsubseteq\Dst f$.
\item For an ordered category~$\mathcal{C}$ with restricted identities
to be with ordered domain it's enough that
$f\circ\id^{\mathcal{C}(\Src f,\Src f)}_{[X]}=f\land
g\sqsubseteq f\Rightarrow
g\circ\id^{\mathcal{C}(\Src f,\Src f)}_{[X]}=g$
for every parallel morphisms~$f$ and $g$ and
$\mathfrak{Z}\ni X\sqsubseteq\Src f$.
\end{enumerate}
\end{obvious}
\begin{conjecture}
There exists a category with restricted identities which
is not with ordered image.
\end{conjecture}
\begin{obvious}
For an ordered category with restricted identities with
ordered domain and image we have
$\iota_{\Src f,\Dst f}\iota_{A,B}f=f\land g\sqsubseteq f
\Rightarrow
\iota_{\Src f,\Dst f}\iota_{A,B}g=g$
for parallel morphisms~$f$ and~$g$.
\end{obvious}
\begin{defn}
~
\begin{enumerate}
\item $\underline{\im}f = \min\operatorname{Im} f$;
\item $\underline{\dom}f = \min\operatorname{Dom} f$.
\end{enumerate}
\end{defn}
\begin{note}
It seems that $\underline{\im}$ and $\underline{\dom}$ are defined not for every
category with restricted identities.
\end{note}
\begin{prop}
~
\begin{enumerate}
\item $\underline{\im}f = \min\operatorname{IM} f$;
\item $\underline{\dom}f = \min\operatorname{DOM} f$.
\end{enumerate}
\end{prop}
\begin{proof}
It follows from $\operatorname{IM}f=\mathscr{S}\operatorname{Im}f$
(and likewise for~$\underline{\dom}f$).
\end{proof}
\begin{thm}
$\operatorname{DOM} (g \circ f) \supseteq \operatorname{DOM} f$, $\operatorname{IM} (g \circ f)
\supseteq \operatorname{IM} g$, $\operatorname{Dom} (g \circ f) \supseteq \operatorname{Dom} f$,
$\operatorname{Im} (g \circ f) \supseteq \operatorname{Im} g$.
\end{thm}
\begin{proof}
$\mathcal{E}_{\mathcal{C}}^{Y, \operatorname{Dst} f} \circ
\mathcal{E}_{\mathcal{C}}^{\operatorname{Dst} f, Y} \circ g \circ f = g \circ f
\Leftarrow \mathcal{E}_{\mathcal{C}}^{Y, \operatorname{Dst} f} \circ
\mathcal{E}_{\mathcal{C}}^{\operatorname{Dst} f, Y} \circ g = g$ and it implies
$\operatorname{IM} (g \circ f) \supseteq \operatorname{IM} g$. The rest follows easily.
\end{proof}
\begin{cor}
$\underline{\dom}(g \circ f) \sqsubseteq \underline{\dom}f$, $\underline{\im} (g \circ f)
\sqsubseteq \underline{\im}g$ whenever $\underline{\dom}$/$\underline{\im}$ are defined.
\end{cor}
\section{Equivalent morphisms}
\begin{prop}\label{two-iotas}
$\iota_{A, B} \iota_{X, Y} f = \iota_{A, B} f$ for every sets $A$, $B$, $X$,
$Y$ whenever $\operatorname{DOM} f$ and $\operatorname{IM} f$ are filters and $X \in
\operatorname{DOM} f$, $Y \in \operatorname{IM} f$.
\end{prop}
\begin{proof}
~
\begin{multline*}
\iota_{A, B} f =\mathcal{E}_{\mathcal{C}}^{\Dst f, B} \circ f \circ
\mathcal{E}_{\mathcal{C}}^{A, \Src f} =\\ \text{(by definition of
$\operatorname{IM} f$ and $\operatorname{DOM} f$)} =\\\mathcal{E}_{\mathcal{C}}^{\Dst f,
B} \circ \mathcal{E}_{\mathcal{C}}^{Y, \Dst f} \circ
\mathcal{E}_{\mathcal{C}}^{\Dst f, Y} \circ f \circ
\mathcal{E}_{\mathcal{C}}^{X, \Src f} \circ
\mathcal{E}_{\mathcal{C}}^{\Src f, X} \circ
\mathcal{E}_{\mathcal{C}}^{A, \Src f} =\\\mathcal{E}_{\mathcal{C}}^{Y,
B} \circ \mathcal{E}_{\mathcal{C}}^{\Dst f, Y} \circ f \circ
\mathcal{E}_{\mathcal{C}}^{X, \Src f} \circ
\mathcal{E}_{\mathcal{C}}^{A, X} =\\ \iota_{A, B} \iota_{X, Y} f
\end{multline*}
because
\begin{multline*} \mathcal{E}^{\Dst f, B} \circ \mathcal{E}^{Y, \Dst f}
\circ \mathcal{E}^{\Dst f, Y} =\\ \id^{\mathcal{C}(\Dst f, B)}_{Y \sqcap
\Dst f \sqcap B} = \id^{\mathcal{C}(Y, B)}_{Y \sqcap B} \circ \id^{\mathcal{C}(\Dst f,Y)}_{Y \sqcap \Dst f} =\\ \mathcal{E}^{Y, B} \circ
\mathcal{E}^{\Dst f, Y}\end{multline*}
and thus
$\mathcal{E}_{\mathcal{C}}^{\Dst f, B} \circ
\mathcal{E}_{\mathcal{C}}^{Y, \Dst f} \circ
\mathcal{E}_{\mathcal{C}}^{\Dst f, Y} =\mathcal{E}_{\mathcal{C}}^{Y,
B} \circ \mathcal{E}_{\mathcal{C}}^{\Dst f, Y}$ and similarly for
$\mathcal{E}_{\mathcal{C}}^{X, \Src f} \circ
\mathcal{E}_{\mathcal{C}}^{\Src f, X} \circ
\mathcal{E}_{\mathcal{C}}^{A, \Src f}$.
\end{proof}
\begin{defn}
I call two morphisms $f\in\mathcal{C}(A_0,B_0)$ and
$g\in\mathcal{C}(A_1,B_1)$
of a category with restricted morphisms \emph{equivalent}
(and denote $f\sim g$) when
\[\iota_{A_0\sqcup A_1,B_0\sqcup B_1}f=\iota_{A_0\sqcup A_1,B_0\sqcup B_1}g.\]
\end{defn}
\begin{prop}
$f\sim g$~iff $\iota_{A,B}f=\iota_{A,B}g$ for
some~$A\in\operatorname{DOM}f\cap\operatorname{DOM}g$,~$B\in\operatorname{IM}f\cap\operatorname{IM}g$.
\end{prop}
\begin{proof}
Both
\[\iota_{A,B}f=\iota_{A,B}g\Rightarrow
\iota_{A_0\sqcup A_1,B_0\sqcup B_1}f=\iota_{A_0\sqcup A_1,B_0\sqcup B_1}g\]
and
\[\iota_{A,B}f=\iota_{A,B}g\Leftarrow
\iota_{A_0\sqcup A_1,B_0\sqcup B_1}f=\iota_{A_0\sqcup A_1,B_0\sqcup B_1}g\]
follow from proposition~\ref{two-iotas}.
\end{proof}
\begin{thm}\label{uf-sim-cond}
Let
$f:A_0\to B_0$~and~$g:A_1\to B_1$
(for a partially ordered category with restricted identities).
The following are pairwise equivalent:
\begin{enumerate}
\item\label{uf-sim-cond-sim} $f\sim g$;
\item\label{uf-sim-cond-eq} $\iota_{A_1,B_1}f=g$ and $\iota_{A_0,B_0}g=f$;
\item\label{uf-sim-cond-sb} $\iota_{A_1,B_1}f\sqsupseteq g$ and $\iota_{A_0,B_0}g\sqsupseteq f$.
\end{enumerate}
\end{thm}
\begin{proof}
~
\begin{description}
\item[\ref{uf-sim-cond-sim}$\Rightarrow$\ref{uf-sim-cond-eq}]
$\iota_{A_0\sqcup A_1,B_0\sqcup B_1}f=\iota_{A_0\sqcup A_1,B_0\sqcup B_1}g$;
$\iota_{A_1,B_1}\iota_{A_0\sqcup A_1,B_0\sqcup B_1}f=\iota_{A_1,B_1}\iota_{A_0\sqcup A_1,B_0\sqcup B_1}g$;
$\iota_{A_1,B_1}f=\iota_{A_1,B_1}g$;
$\iota_{A_1,B_1}f=g$. $\iota_{A_0,B_0}g=f$ is similar.
\item[\ref{uf-sim-cond-sb}$\Rightarrow$\ref{uf-sim-cond-sim}]
Let $\iota_{A_1, B_1} f \sqsupseteq g$ and $\iota_{A_0, B_0} g \sqsupseteq f$.
$\iota_{A_1, B_1} \iota_{A_0, B_0} g \sqsupseteq g$;
$\mathcal{E}^{B_0, B_1} \circ \mathcal{E}^{B_1, B_0} \circ g \circ
\mathcal{E}^{A_0, A_1} \circ \mathcal{E}^{A_1, A_0}\sqsupseteq g$;
$\id^{\mathcal{C} (B_1, B_1)}_{[B_0]\sqcap[B_1]} \circ g \circ
\id^{\mathcal{C} (A_1, A_1)}_{[A_0]\sqcap[A_1]} \sqsupseteq g$;
$\id^{\mathcal{C} (B_1, B_1)}_{[B_0]\sqcap[B_1]} \circ g \sqsupseteq g$;
$\id^{\mathcal{C} (B_1, B_1)}_{[B_0]\sqcap[B_1]} \circ g = g$;
$\id^{\mathcal{C} (B_0 \sqcap B_1, B_1)}_{[B_0]\sqcap[B_1]} \circ
\id^{\mathcal{C} (B_1, B_0 \sqcap B_1)}_{[B_0]\sqcap[B_1]} \circ g = g$;
$\mathcal{E}^{B_0 \sqcap B_1, B_1} \circ \mathcal{E}^{B_1, B_0 \sqcap B_1}
\circ g = g$. Thus $B_0 \sqcap B_1 \in \operatorname{Im} g$. Similarly $A_0 \sqcap A_1
\in \operatorname{Dom} g$.
So $\iota_{A_0 \sqcup A_1, B_0 \sqcup B_1} f = \iota_{A_0 \sqcup A_1, B_0
\sqcup B_1} \iota_{A_0, B_0} g = \iota_{A_0 \sqcup A_1, B_0 \sqcup B_1} g$.
\item[\ref{uf-sim-cond-eq}$\Rightarrow$\ref{uf-sim-cond-sb}]
Obvious.
\end{description}
\end{proof}
\begin{prop}
Above defined equivalence of morphisms (for a small category)
is an equivalence relation.
\end{prop}
\begin{proof}
~
\begin{description}
\item[Reflexivity] Obvious.
\item[Symmetry] Obvious.
\item[Transitivity] Let $f\sim g$ and $g\sim h$ for
$f:A_0\to B_0$, $g:A_1\to B_1$, $h:A_2\to B_2$.
Then
$\iota_{A_0\sqcup A_1,B_0\sqcup B_1}f=\iota_{A_0\sqcup A_1,B_0\sqcup B_1}g$ and
$\iota_{A_1\sqcup A_2,B_1\sqcup B_2}g=\iota_{A_1\sqcup A_2,B_1\sqcup B_2}h$.
Thus
\[\iota_{A_0\sqcup A_1\sqcup A_2,B_0\sqcup B_1\sqcup B_2}\iota_{A_0\sqcup A_1,B_0\sqcup B_1}f=\iota_{A_0\sqcup A_1\sqcup A_2,B_0\sqcup B_1\sqcup B_2}\iota_{A_0\sqcup A_1,B_0\sqcup B_1}g\] and
\[\iota_{A_0\sqcup A_1\sqcup A_2,B_0\sqcup B_1\sqcup B_2}\iota_{A_1\sqcup A_2,B_1\sqcup B_2}g=\iota_{A_0\sqcup A_1\sqcup A_2,B_0\sqcup B_1\sqcup B_2}\iota_{A_1\sqcup A_2,B_1\sqcup B_2}h\]
that is (proposition~\ref{two-iotas})
\[\iota_{A_0\sqcup A_1\sqcup A_2,B_0\sqcup B_1\sqcup B_2}f=\iota_{A_0\sqcup A_1\sqcup A_2,B_0\sqcup B_1\sqcup B_2}g\]
and
\[\iota_{A_0\sqcup A_1\sqcup A_2,B_0\sqcup B_1\sqcup B_2}g=\iota_{A_0\sqcup A_1\sqcup A_2,B_0\sqcup B_1\sqcup B_2}h.\]
Combining,
$\iota_{A_0\sqcup A_1\sqcup A_2,B_0\sqcup B_1\sqcup B_2}f=\iota_{A_0\sqcup A_1\sqcup A_2,B_0\sqcup B_1\sqcup B_2}h$ and thus
\[\iota_{A_0\sqcup A_2,B_0\sqcup B_2}\iota_{A_0\sqcup A_1\sqcup A_2,B_0\sqcup B_1\sqcup B_2}f=\iota_{A_0\sqcup A_2,B_0\sqcup B_2}\iota_{A_0\sqcup A_1\sqcup A_2,B_0\sqcup B_1\sqcup B_2}h;\]
(again proposition~\ref{two-iotas}) $\iota_{A_0\sqcup A_2,B_0\sqcup B_2}f=\iota_{A_0\sqcup A_2,B_0\sqcup B_2}h$
that is $f\sim h$.
\end{description}
\end{proof}
\begin{prop}
$[f] = \setcond{\iota_{A,B}f}{
A\in\operatorname{DOM}f,B\in\operatorname{IM}f}$.
\end{prop}
\begin{proof}
If~$A\in\operatorname{DOM}f$,~$B\in\operatorname{IM}f$
then
\[\iota_{A\sqcup\Src f,B\sqcup\Dst f}\iota_{A,B}f =
\iota_{A\sqcup\Src f,B\sqcup\Dst f}f.\] Thus
$\iota_{A,B}f\sim f$ that is $\iota_{A,B}f\in[f]$.
Let now $g\in[f]$ that is $f\sim g$;
\[\iota_{\Src f\sqcup\Src g,\Dst f\sqcup\Dst g}f=
\iota_{\Src f\sqcup\Src g,\Dst f\sqcup\Dst g}g.\]
Take $A=\Src g$, $B=\Dst g$. We have
\begin{gather*}
\iota_{A,B}\iota_{\Src f\sqcup\Src g,\Dst f\sqcup\Dst g}f=
\iota_{A,B}\iota_{\Src f\sqcup\Src g,\Dst f\sqcup\Dst g}g;\\
\iota_{A,B}f=\iota_{A,B}g = g.
\end{gather*}
\end{proof}
\begin{prop}
~
\begin{enumerate}
\item $\operatorname{IM} f = \setcond{Y \in \mathfrak{Z}}{
\mathcal{E}_{\mathcal{C}}^{\Dst f, Y} \circ f \sim f}$;
\item $\operatorname{DOM} f = \setcond{X \in \mathfrak{Z}}{
f\circ\mathcal{E}_{\mathcal{C}}^{X, \Src f} \sim f}$.
\end{enumerate}
\end{prop}
\begin{proof}
~
\begin{multline*}
\mathcal{E}_{\mathcal{C}}^{\Dst f, Y} \circ f \sim f
\Leftrightarrow
\iota_{\Src f,Y\sqcup\Dst f}
(\mathcal{E}_{\mathcal{C}}^{\Dst f, Y} \circ f) =
\iota_{\Src f,Y\sqcup\Dst f}f \Leftrightarrow \\
\mathcal{E}^{Y,Y\sqcup\Dst f}\circ\mathcal{E}^{\Dst f, Y} \circ f \circ \mathcal{E}^{\Src f,\Src f} =
\mathcal{E}^{\Dst f,Y\sqcup\Dst f}\circ f\circ\mathcal{E}^{\Src f,\Src f} \Leftrightarrow \\
\mathcal{E}^{Y,Y\sqcup\Dst f}\circ\mathcal{E}^{\Dst f, Y}\circ f=\mathcal{E}^{\Dst f,Y\sqcup\Dst f}\circ f
\Leftrightarrow \text{(proposition~\ref{e-mono-epi})} \\ \Leftrightarrow
\mathcal{E}^{Y\sqcup\Dst f,\Dst f}\circ \mathcal{E}^{Y,Y\sqcup\Dst f}\circ\mathcal{E}^{\Dst f, Y}\circ f=\mathcal{E}^{Y\sqcup\Dst f,\Dst f}\circ \mathcal{E}^{\Dst f,Y\sqcup\Dst f}\circ f \Leftrightarrow \\
\mathcal{E}^{Y,\Dst f}\circ\mathcal{E}^{\Dst f,Y}\circ f = f.
\end{multline*}
From this our thesis follows obviously.
\end{proof}
\begin{prop}\label{iota-less}
$\iota_{A_1,B_1}\iota_{A_0,B_0}f\sqsubseteq\iota_{A_1,B_1}f$.
\end{prop}
\begin{proof}
\begin{multline*}
\iota_{A_1,B_1}\iota_{A_0,B_0}f=\\
\mathcal{E}^{B_0,B_1}\circ\mathcal{E}^{\Dst f,B_0}\circ f\circ
\mathcal{E}^{A_0,\Src f}\circ\mathcal{E}^{A_1,A_0}=\\
\id^{\mathcal{C}(B_0,B_1)}_{[B_0]\sqcap[B_1]}\circ\id^{\mathcal{C}(\Dst f,B_0)}_{[\Dst f]\sqcap[B_0]}
\circ f\circ
\id^{\mathcal{C}(A_0,\Src f)}_{[A_0]\sqcap[\Src f]}\circ
\id^{\mathcal{C}(A_1,A_0)}_{[A_1]\sqcap[A_0]}=\\
\id^{\mathcal{C}(\Dst f,B_1)}_{[\Dst f]\sqcap[B_0]\sqcap[B_1]}
\circ f\circ
\id^{\mathcal{C}(A_1,\Src f)}_{[A_0]\sqcap[A_1]\sqcap[\Src f]}
\sqsubseteq\\
\id^{\mathcal{C}(\Dst f,B_1)}_{[\Dst f]\sqcap[B_1]}
\circ f\circ
\id^{\mathcal{C}(A_1,\Src f)}_{[A_1]\sqcap[\Src f]}=\\
\iota_{A_1,B_1}f.
\end{multline*}
\end{proof}
\section{Binary product}
\begin{defn}
The category \emph{with binary product morphism}
is a category with restricted identities and additional axioms
\begin{enumerate}
\item\label{binprod-cmp} $\id^{\mathcal{C}(B,B)}_Y\circ f\circ\id^{\mathcal{C}(A,A)}_X=f\sqcap(X\times_{A,B}Y)$
(holding for every $A,B\in\mathfrak{Z}$,
$\mathfrak{A}\ni X\sqsubseteq[A]$,
$\mathfrak{A}\ni Y\sqsubseteq[B]$,
$X\times_{A,B}Y\in\mathcal{C}(A,B)$
and morphism~$f\in\mathcal{C}(A,B)$);
\item\label{binprod-mv} $\iota_{A_1,B_1}(X\times_{A_0,B_0}Y)=
X\times_{A_1,B_1}Y$ whenever
$X\sqsubseteq[A_0]\sqcap[A_1]$ and $Y\sqsubseteq[B_0]\sqcap[B_1]$.
\end{enumerate}
\end{defn}
\begin{prop}
The second axiom is equivalent to the following axiom:
\begin{enumerate}
\item
$f \sim X \times_{A_0, B_0} Y \Leftrightarrow f =
X \times_{A_1, B_1} Y$
whenever
$X\sqsubseteq[A_0]\sqcap[A_1]$ and $Y\sqsubseteq[B_0]\sqcap[B_1]$, $f:A_1\to B_1$.
\end{enumerate}
\end{prop}
\begin{proof}
~
\begin{widedisorder}
\item[$\Leftarrow$] Obvious.
\item[$\Rightarrow$]~
$f \sim X \times_{A_0, B_0} Y \Leftarrow f =
X \times_{A_1, B_1} Y$ because
$\iota_{A_1,B_1}(X\times_{A_0,B_0}Y)=
X\times_{A_1,B_1}Y$ and
$\iota_{A_0,B_0}(X\times_{A_1,B_1}Y)=
X\times_{A_0,B_0}Y$.
Let's prove
$f \sim X \times_{A_0, B_0} Y \Rightarrow f =
X \times_{A_1, B_1} Y$.
Really, if $f \sim X \times_{A_0, B_0} Y$ then
$f = \iota_{A_1,B_1}f \sim \iota_{A_1,B_1}(X \times_{A_0, B_0} Y)=X \times_{A_1, B_1} Y$ and thus
$f=X \times_{A_1, B_1} Y$.
\end{widedisorder}
\end{proof}
\begin{prop}
$[A]\times_{A,B}[B]$ is the greatest morphism
$\top^{\mathcal{C}(A,B)}:A\to B$.
\end{prop}
\begin{proof}
It's enough to prove $f\sqcap([A]\times_{A,B}[B])=f$ for every
$f:A\to B$. Really,
$f\sqcap([A]\times_{A,B}[B])=
\id^{\mathcal{C}(B,B)}_B\circ f\circ\id^{\mathcal{C}(A,A)}_A=
1^B\circ f\circ 1^A=f$.
\end{proof}
\begin{prop}
For every category with binary product morphism
\[X\times_{A,B}Y=
\id^{\mathcal{C}(B,B)}_Y\circ\top^{\mathcal{C}(A,B)}\circ
\id^{\mathcal{C}(A,A)}_X\]
\end{prop}
\begin{proof}
$X\times_{A,B}Y\sqsupseteq
\id^{\mathcal{C}(B,B)}_Y\circ\top^{\mathcal{C}(A,B)}\circ\id^{\mathcal{C}(A,A)}_X$
because
$\id^{\mathcal{C}(B,B)}_Y\circ\top^{\mathcal{C}(A,B)}\circ\id^{\mathcal{C}(A,A)}_X=
\top^{\mathcal{C}(A,B)}\sqcap(X\times_{A,B}Y)$.
\begin{multline*}
\id^{\mathcal{C}(B,B)}_Y\circ\top^{\mathcal{C}(A,B)}\circ\id^{\mathcal{C}(A,A)}_X\sqsupseteq\\
\id^{\mathcal{C}(B,B)}_Y\circ(X\times_{A,B}Y)\circ
\id^{\mathcal{C}(A,A)}_X=\\
(X\times_{A,B}Y)\sqcap(X\times_{A,B}Y)=X\times_{A,B}Y.
\end{multline*}
\end{proof}
\begin{prop}
$\iota_{A,B}(f\sqcap g)=\iota_{A,B}f\sqcap\iota_{A,B}g$
for every parallel morphisms~$f$ and~$g$ and objects~$A$
and~$B$, whenever all $\mathcal{E}^{X,Y}$ are metamonovalued
and metainjective.
\end{prop}
\begin{proof}
\begin{multline*}
\iota_{A,B}(f\sqcap g)=\\
\mathcal{E}^{\Dst f,B}\circ(f\sqcap g)\circ
\mathcal{E}^{A,\Src f}=\\
(\mathcal{E}^{\Dst f,B}\circ f\circ\mathcal{E}^{A,\Src f})\sqcap
(\mathcal{E}^{\Dst f,B}\circ g\circ\mathcal{E}^{A,\Src f})=\\
\iota_{A,B}f\sqcap\iota_{A,B}g.
\end{multline*}
\end{proof}
\begin{prop}
$(X_0\times_{A,B}Y_0)\sqcap(X_1\times_{A,B}Y_1)=
(X_0\sqcap X_1)\times_{A,B}(Y_0\sqcap Y_1)$.
\end{prop}
\begin{proof}
$(X_0\times_{A,B}Y_0)\sqcap(X_1\times_{A,B}Y_1)=
\id^{\mathcal{C}(B,B)}_{Y_1}\circ(X_0\times_{A,B}Y_0)\circ
\id^{\mathcal{C}(A,A)}_{X_1}=
\id^{\mathcal{C}(B,B)}_{Y_1}\circ
\id^{\mathcal{C}(B,B)}_{Y_0}\circ
\top^{\mathcal{C}(A,B)}\circ
\id^{\mathcal{C}(A,A)}_{X_1}\circ
\id^{\mathcal{C}(A,A)}_{X_0}=
\id^{\mathcal{C}(B,B)}_{Y_0\sqcap Y_1}\circ
\top^{\mathcal{C}(A,B)}\circ
\id^{\mathcal{C}(A,A)}_{X_0\sqcap X_1}=
(X_0\sqcap X_1)\times_{A,B}(Y_0\sqcap Y_1)$.
\end{proof}
\begin{prop}
For a category with binary product morphism
$\operatorname{Im}f$, $\operatorname{Dom}f$,
$\operatorname{IM}f$, and $\operatorname{DOM}f$
are filters.
\end{prop}
\begin{proof}
That they are upper sets was proved above.
To prove that $\operatorname{Im} f$ is a filter it remains
to show $A, B \in \operatorname{Im} f \Leftrightarrow
A \sqcap B \in \operatorname{Im} f$. Really,
\[ A, B \in \operatorname{Im} f \Leftrightarrow \top \times A \sqsupseteq f \land \top
\times B \sqsupseteq f \Rightarrow \top \times (A \sqcap B) \sqsupseteq f
\Leftrightarrow A \sqcap B \in \operatorname{Im} f. \]
$\operatorname{Dom} f$ is similar.
The thesis for~$\operatorname{IM}f$,~$\operatorname{DOM}f$
follows from above proved
for~$\operatorname{Im}f$,~$\operatorname{Dom}f$.
\end{proof}
\begin{note}
For example for below defined category of funcoids
(with binary product morphism), these filters are filters
on filters on sets not filters of sets and thus are not
the same as~$\im$ and~$\dom$.
\end{note}
\section{Operations on the set of unfixed morphisms}
\subsection{Semigroup of unfixed morphisms}
\begin{prop}\label{iota-comp}
Let $f : A_0 \rightarrow A_1$ and $g : A_1 \rightarrow A_2$ and $A_1
\sqsubseteq B_1$. Then $\iota_{B_0, B_2} (g \circ f) = \iota_{B_1, B_2} g
\circ \iota_{B_0, B_1} f$.
\end{prop}
\begin{proof}
\begin{multline*}
\iota_{B_0, B_2} (g \circ f) =\\ \mathcal{E}_{\mathcal{C}}^{A_2,B_2}
\circ g \circ f \circ \mathcal{E}_{\mathcal{C}}^{B_0,A_0} =\\ \mathcal{E}_{\mathcal{C}}^{A_2,B_2} \circ g \circ 1^{A_1} \circ f
\circ \mathcal{E}_{\mathcal{C}}^{B_0,A_0} =\\ \mathcal{E}_{\mathcal{C}}^{A_2,B_2} \circ g \circ \id^{\mathcal{C}(\Dst f,\Src g)}_{A_1} \circ f
\circ \mathcal{E}_{\mathcal{C}}^{B_0,A_0} =\\ \mathcal{E}_{\mathcal{C}}^{A_2,B_2} \circ g \circ \mathcal{E}^{B_1,A_1}
\circ \mathcal{E}^{A_1,B_1} \circ f \circ \mathcal{E}_{\mathcal{C}}^{B_0,A_0} =\\ \iota_{B_1, B_2} g \circ \iota_{B_0,
B_1} f.
\end{multline*}
\end{proof}
\begin{defn}
We will turn the category~$\mathcal{C}$ into a semigroup
$\mathcal{C}/\mathord{\sim}$
(\emph{the semigroup of unfixed morphisms})
by taking the partition regarding the relation~$\sim$ and
the formula for the composition $[g]\circ[f] = [g\circ f]$ whenever~$f$ and~$g$
are composable morphisms.
\end{defn}
We need to prove that $[g]\circ[f]$ does not depend on
choice of~$f$ and~$g$ (provided that~$f$ and~$g$
are composable). We also need to prove that $[g]\circ[f]$
is always defined for every morphisms (not necessarily
composable)~$f$ and~$g$. That the resulting structure is
a semigroup (that is,~$\circ$ is associative) is then
obvious.
\begin{proof}
That $[g]\circ[f]$ is defined in at least one way for every
morphisms~$f$ and~$g$ is simple to prove. Just consider the
morphisms
$f'=\iota_{\Src f,\Dst f\sqcup\Src g}f\sim f$ and
$g'=\iota_{\Dst f\sqcup\Src g,\Dst g}g\sim g$.
Then we can take $[g]\circ[f]=[g'\circ f']$.
It remains to prove that $[g]\circ[f]$ does not depend on
choice of~$f$ and~$g$. Really, take arbitrary composable
pairs of morphisms $(f_0:A_0\to B_0,g_0:B_0\to C_0)$ and
$(f_1:A_1\to B_1,g_1:B_1\to C_1)$ such that
$f_0\sim f_1$ and $g_0\sim g_1$. It remains to prove that
$g_0\circ f_0\sim g_1\circ f_1$.
We have
\begin{multline*}
\iota_{B_0\sqcup B_1,C_0\sqcup C_1}g_0 \circ
\iota_{A_0\sqcup A_1,B_0\sqcup B_1}f_0
= \text{(proposition~\ref{iota-comp})} = \\
\mathcal{E}_{\mathcal{C}}^{C_0,C_0\sqcup C_1}\circ g_0 \circ
f_0\circ\mathcal{E}_{\mathcal{C}}^{A_0\sqcup A_1,B_0} =
\iota_{A_0\sqcup A_1,C_0\sqcup C_1}(g_0\circ f_0).
\end{multline*}
Similarly
\[\iota_{B_0\sqcup B_1,C_0\sqcup C_1}g_1 \circ
\iota_{A_0\sqcup A_1,B_0\sqcup B_1}f_1 =
\iota_{A_0\sqcup A_1,C_0\sqcup C_1}(g_1\circ f_1).\]
But
\[\iota_{B_0\sqcup B_1,C_0\sqcup C_1}g_0 \circ
\iota_{A_0\sqcup A_1,B_0\sqcup B_1}f_0 =
\iota_{B_0\sqcup B_1,C_0\sqcup C_1}g_1 \circ
\iota_{A_0\sqcup A_1,B_0\sqcup B_1}f_1\]
thus having
$\iota_{A_0\sqcup A_1,C_0\sqcup C_1}(g_0\circ f_0) =
\iota_{A_0\sqcup A_1,C_0\sqcup C_1}(g_1\circ f_1)$ and so
$g_0\circ f_0\sim g_1\circ f_1$.
\end{proof}
\subsection{Restricted identities}
\begin{defn}
\emph{Restricted identity} for unfixed morphisms is
defined as: $\id_X = [\id^{\mathcal{C}(A,B)}_X]$ for
an $X\sqsubseteq[A]\sqcap[B]$.
\end{defn}
We need to prove that it does not depend on the choice
of~$A$ and~$B$.
\begin{proof}
Let $\mathfrak{A}\ni X\sqsubseteq[A_0]\sqcap[B_0]$ and
$\mathfrak{A}\ni X\sqsubseteq[A_1]\sqcap[B_1]$ for
$A_0,B_0,A_1,B_1\in\mathfrak{Z}$. We need to prove
$\id^{\mathcal{C}(A_0,B_0)}_X\sim
\id^{\mathcal{C}(A_1,B_1)}_X$.
Really,
\begin{multline*}
\iota_{A_1,B_1}\id^{\mathcal{C}(A_0,B_0)}_X =\\
\mathcal{E}^{B_0,B_1}\circ\id^{\mathcal{C}(A_0,B_0)}_X
\circ \mathcal{E}^{A_1,A_0} =\\
\id^{\mathcal{C}(B_0,B_1)}_{[B_0]\sqcap[B_1]}\circ
\id^{\mathcal{C}(A_0,B_0)}_X\circ
\id^{\mathcal{C}(A_1,A_0)}_{[A_0]\sqcap[A_1]} =\\
\id^{\mathcal{C}(A_1,B_1)}_{[A_0]\sqcap[A_1]\sqcap[B_0]\sqcap[B_1]\sqcap X} =\\
\id^{\mathcal{C}(A_1,B_1)}_X.
\end{multline*}
Similarly
$\iota_{A_0,B_0}\id^{\mathcal{C}(A_1,B_1)}_X =
\id^{\mathcal{C}(A_0,B_0)}_X$.
So $\id^{\mathcal{C}(A_0,B_0)}_X\sim
\id^{\mathcal{C}(A_1,B_1)}_X$.
\end{proof}
\begin{prop}
$\id_Y\circ\id_X=\id_{X\sqcap Y}$ for
every~$X,Y\in\mathfrak{A}$.
\end{prop}
\begin{proof}
Take arbitrary $\id^{\mathcal{C}(A,B_0)}_X\in\id_X$ and
$\id^{\mathcal{C}(B_1,C)}_Y\in\id_Y$.
Obviously,
$\id^{\mathcal{C}(A,B_0\sqcup B_1)}_X\in\id_X$ and
$\id^{\mathcal{C}(B_0\sqcup B_1,C)}_Y\in\id_Y$.
Thus
$\id_Y\circ\id_X=
[\id^{\mathcal{C}(B_0\sqcup B_1,C)}_Y]\circ
[\id^{\mathcal{C}(A,B_0\sqcup B_1)}_X]=
[\id^{\mathcal{C}(A,C)}_{X\sqcap Y}]=
\id_{X\sqcap Y}$.
\end{proof}
\subsection{Poset of unfixed morphisms}
\begin{lem}
$f\sqsubseteq g\Rightarrow
\iota_{A,B}f\sqsubseteq\iota_{A,B}g$ for every
morphisms~$f$ and~$g$ such that
$\Src f=\Src g$ and $\Dst f=\Dst g$.
\end{lem}
\begin{proof}
\begin{multline*}
\iota_{A,B}f\sqsubseteq\iota_{A,B}g \Leftrightarrow\\
\mathcal{E}^{\Dst f,B}\circ f\circ\mathcal{E}^{A,\Src f}
\sqsubseteq
\mathcal{E}^{\Dst g,B}\circ g\circ\mathcal{E}^{A,\Src g}
\Leftrightarrow\\
\id^{\mathcal{C}(\Dst f,B)}_{[B]\sqcap[\Dst f]}\circ f\circ\id^{\mathcal{C}(A,\Src f)}_{[A]\sqcap[\Src f]}
\sqsubseteq
\id^{\mathcal{C}(\Dst g,B)}_{[B]\sqcap[\Dst g]}\circ g\circ\id^{\mathcal{C}(A,\Src g)}_{[A]\sqcap[\Src g]}
\Leftarrow\\ f\sqsubseteq g
\end{multline*}
because
$\id^{\mathcal{C}(\Dst f,B)}_{[B]\sqcap[\Dst f]}=
\id^{\mathcal{C}(\Dst g,B)}_{[B]\sqcap[\Dst g]}$ and
$\id^{\mathcal{C}(A,\Src f)}_{[A]\sqcap[\Src f]}=
\id^{\mathcal{C}(A,\Src g)}_{[A]\sqcap[\Src g]}$.
\end{proof}
\begin{cor}\label{unxif-org-cong}
~
\begin{enumerate}
\item\label{unxif-org-cong-impl}
$f_0\sqsubseteq g_0\land f_0\sim f_1\land g_0\sim g_1
\Rightarrow f_1\sqsubseteq g_1$ whenever
$\Src f_0=\Src g_0$ and $\Dst f_0=\Dst g_0$ and
$\Src f_1=\Src g_1$ and $\Dst f_1=\Dst g_1$.
\item\label{unxif-org-cong-eq}
$f_0\sqsubseteq g_0\Leftrightarrow f_1\sqsubseteq g_1$ whenever
$\Src f_0=\Src g_0$ and $\Dst f_0=\Dst g_0$ and
$\Src f_1=\Src g_1$ and $\Dst f_1=\Dst g_1$ and
$f_0\sim f_1\land g_0\sim g_1$.
\end{enumerate}
\end{cor}
\begin{proof}
~
\begin{disorder}
\item[\ref{unxif-org-cong-impl}] Because
$f_1=\iota_{\Src f_1,\Dst f_1}f_0$ and
$g_1=\iota_{\Src g_1,\Dst g_1}f_0$.
\item[\ref{unxif-org-cong-eq}] A consequence of the
previous.
\end{disorder}
\end{proof}
The above corollary warrants validity of the following
definition:
\begin{defn}
The order on the set of unfixed morphisms is defined
by the formula
$[f]\sqsubseteq[g]\Leftrightarrow f\sqsubseteq g$
whenever $\Src f=\Src g\land\Dst f=\Dst g$.
\end{defn}
It is really an order:
\begin{proof}
~
\begin{description}
\item[Reflexivity] Obvious.
\item[Transitivity] Obvious.
\item[Antisymmetry] Let $[f]\sqsubseteq[g]$ and
$[g]\sqsubseteq[f]$ and $\Src f=\Src g\land\Dst f=\Dst g$.
Then $f\sqsubseteq g$ and $g\sqsubseteq f$ and thus
$f=g$ so having $[f]=[g]$.
\end{description}
\end{proof}
\begin{obvious}\label{unfix-mor-emb}
$f\mapsto[f]$ is an order embedding from the set
$\mathcal{C}(A,B)$ to unfixed morphisms, for every
objects~$A$,~$B$.
\end{obvious}
\begin{prop}\label{cmpl-lat-par}
If $S$ is a set of parallel morphisms of a partially ordered
category with an equivalence relation respecting the order, then
\begin{enumerate}
\item\label{cmpl-lat-par-cap}
$\bigsqcap_{X\in S}[X]$ exists and
$\bigsqcap_{X\in S}[X]=[\bigsqcap S]$;
\item\label{cmpl-lat-par-cup}
$\bigsqcup_{X\in S}[X]$ exists and
$\bigsqcup_{X\in S}[X]=[\bigsqcup S]$.
\end{enumerate}
\end{prop}
\begin{proof}
~
\begin{widedisorder}
\item[\ref{cmpl-lat-par-cap}]
$[\bigsqcap S]\sqsubseteq[X]$ for every~$X\in S$ because
$\bigsqcap S\sqsubseteq X$.
Let now $L\sqsubseteq[X]$ for every~$X\in S$ for an
equivalence class~$L$. Then $L\sqsubseteq[\bigsqcap S]$
because $l\sqsubseteq\bigsqcap S$ for~$l\in L$ because
$l\sqsubseteq X$ for every~$X\in S$.
Thus $[\bigsqcap S]$ is the greatest lower bound of
$\setcond{[X]}{X\in S}$.
\item[\ref{cmpl-lat-par-cup}] By duality.
\end{widedisorder}
\end{proof}
\begin{prop}
~
\begin{enumerate}
\item If every $\Hom$-set is a join-semilattice, then
the poset of unfixed morphism is a join-semilattice.
\item If every $\Hom$-set is a join-semilattice, then
the poset of unfixed morphism is a meet-semilattice.
\end{enumerate}
\end{prop}
\begin{proof}
Let~$f$ and~$g$ be arbitrary morphisms.
\begin{multline*}
[f]\sqcup[g] =
[\iota_{\Src f\sqcup\Src g,\Dst f\sqcup\Dst g}f]\sqcup