Skip to content

[Bug]: torch.OutOfMemoryError: CUDA out of memory for quart Qwen3-moe-30B-A3B #1876

@QuanhuiGuan

Description

@QuanhuiGuan

🐛 Describe the bug

I used four graphics cards and set the device_map parameter, but only one graphics card is used during the quantization process.

🛠️ Steps to reproduce

import torch
from datasets import load_dataset
from datasets import Dataset
# from random import shuffle
from transformers import AutoModelForCausalLM, AutoTokenizer

from llmcompressor import oneshot
from llmcompressor.modifiers.awq import AWQModifier
from llmcompressor.utils import dispatch_for_generation
from llmcompressor.transformers.compression.helpers import calculate_offload_device_map

# Select model and load it.
MODEL_ID = "/cloud/data5/model_gallery/Qwen3-30B-A3B"



model = AutoModelForCausalLM.from_pretrained(MODEL_ID, torch_dtype=torch.bfloat16,low_cpu_mem_usage=True, device_map=device_map)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)

# Select calibration dataset.
DATASET_ID = "/cloud/data5/data_gallery/ultrachat_200k"
DATASET_SPLIT = "train_sft"

# Select number of samples. 256 samples is a good place to start.
# Increasing the number of samples can improve accuracy.
NUM_CALIBRATION_SAMPLES = 256
MAX_SEQUENCE_LENGTH = 10280

# Load dataset and preprocess.
ds1 = load_dataset(DATASET_ID, split=f"{DATASET_SPLIT}[:{NUM_CALIBRATION_SAMPLES}]")
ds0 = load_custom_data()
ds = Dataset.from_list(ds0)
ds = ds.shuffle(seed=42)


def preprocess(example):
    return {
        "text": tokenizer.apply_chat_template(
            example["messages"],
            tokenize=False,
        )
    }


ds = ds.map(preprocess)

# Tokenize inputs.
def tokenize(sample):
    return tokenizer(
        sample["text"],
        padding=False,
        max_length=MAX_SEQUENCE_LENGTH,
        truncation=True,
        add_special_tokens=False,
    )


# Configure the quantization algorithm to run.
# NOTE: vllm currently does not support asym MoE, using symmetric here
recipe = [
    AWQModifier(
        ignore=["lm_head", "re:.*mlp.gate$", "re:.*mlp.shared_expert_gate$"],
        scheme="W4A16",
        targets=["Linear"],
    ),
]

# Apply algorithms.
oneshot(
    model=model,
    dataset=ds,
    recipe=recipe,
    max_seq_length=MAX_SEQUENCE_LENGTH,
    num_calibration_samples=NUM_CALIBRATION_SAMPLES,
)

# Confirm generations of the quantized model look sane.
print("\n\n")
print("========== SAMPLE GENERATION ==============")
dispatch_for_generation(model)
input_ids = tokenizer("请问,你是谁?", return_tensors="pt").input_ids.to(
    model.device
)
output = model.generate(input_ids, max_new_tokens=100)
print(tokenizer.decode(output[0]))
print("==========================================\n\n")

# Save to disk compressed.
SAVE_DIR = MODEL_ID.rstrip("/").split("/")[-1] + "-awq-sym"
model.save_pretrained(SAVE_DIR, save_compressed=True)
tokenizer.save_pretrained(SAVE_DIR)
Image

Metadata

Metadata

Labels

bugSomething isn't working

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions