-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpretrain.py
141 lines (113 loc) · 5.62 KB
/
pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import torch
import torch.nn as nn
import torch.optim as optim
import os
import argparse
from tqdm import tqdm
import logging
from torch.utils.data import DataLoader, random_split
import utils
from loaders.mms_dataloader_dg_aug import get_dg_data_loaders
import models
from torch.utils.tensorboard import SummaryWriter
def get_args():
usage_text = (
"UNet Pytorch Implementation"
"Usage: python pretrain.py [options],"
" with [options]:"
)
parser = argparse.ArgumentParser(description=usage_text)
#training details
parser.add_argument('-e','--epochs', type=int, default=50, help='Number of epochs')
parser.add_argument('-bs','--batch_size', type=int, default=4, help='Number of inputs per batch')
parser.add_argument('-c', '--cp', type=str, default='checkpoints', help='The name of the checkpoints.')
parser.add_argument('-t', '--tv', type=str, default='A', help='The name of the checkpoints.')
parser.add_argument('-w', '--wc', type=str, default='UNet', help='The name of the checkpoints.')
parser.add_argument('-mn', '--model_name', type=str, default='unet', help='Name of the model architecture to be used for training/testing.')
parser.add_argument('-lr','--learning_rate', type=float, default='0.0001', help='The learning rate for model training')
parser.add_argument('-wi','--weight_init', type=str, default="xavier", help='Weight initialization method, or path to weights file (for fine-tuning or continuing training)')
parser.add_argument('--save_path', type=str, default='checkpoints', help= 'Path to save model checkpoints')
#hardware
parser.add_argument('-g','--gpu', type=str, default='0', help='The ids of the GPU(s) that will be utilized. (e.g. 0 or 0,1, or 0,2). Use -1 for CPU.')
parser.add_argument('--num_workers' ,type= int, default = 0, help='Number of workers to use for dataload')
return parser.parse_args()
# python pretrain.py -e 50 -bs 4 -c /home/s1575424/xiao/Year3/comp_decoder/CompCSD/cp_unet_100_tvA/ -t A -w UNet_tvA -g 0
def train_net(args):
epochs = args.epochs
batch_size = args.batch_size
device = torch.device('cuda:' + str(args.gpu) if torch.cuda.is_available() else 'cpu')
dir_checkpoint = args.cp
test_vendor = args.tv
wc = args.wc
#Model selection and initialization
model_params = {
'num_classes': 1,
}
model = models.get_model(args.model_name, model_params)
num_params = utils.count_parameters(model)
print('Model Parameters: ', num_params)
models.initialize_weights(model, args.weight_init)
model.to(device)
train_labeled_loader, train_labeled_dataset, train_unlabeled_loader, train_unlabeled_dataset, test_loader, test_dataset = get_dg_data_loaders(args.batch_size, test_vendor=test_vendor, image_size=224)
n_val = int(len(train_labeled_dataset) * 0.1)
n_train = len(train_labeled_dataset) - n_val
train, val = random_split(train_labeled_dataset, [n_train, n_val])
train_loader = DataLoader(train, batch_size=batch_size, shuffle=True, num_workers=8, pin_memory=False, drop_last=True)
val_loader = DataLoader(val, batch_size=batch_size, shuffle=False, num_workers=8, pin_memory=False, drop_last=True)
print(len(train))
print(len(val))
print(len(train_unlabeled_dataset))
#metrics initialization
l1_distance = nn.L1Loss().to(device)
#optimizer initialization
optimizer = optim.Adam(model.parameters(), lr=args.learning_rate)
# need to use a more useful lr_scheduler
scheduler = optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9)
writer = SummaryWriter(comment=wc)
global_step = 0
for epoch in range(epochs):
model.train()
with tqdm(total=n_train, desc=f'Epoch {epoch + 1}/{epochs}', unit='img') as pbar:
for imgs, true_masks in train_loader:
imgs = imgs.to(device=device, dtype=torch.float32)
mask_type = torch.float32
true_masks = true_masks.to(device=device, dtype=mask_type)
out = model(imgs)
reco = out[0]
reco_loss = l1_distance(reco, imgs)
batch_loss = reco_loss
writer.add_scalar('Loss/reco_loss', reco_loss.item(), global_step)
pbar.set_postfix(**{'loss (batch)': batch_loss.item()})
optimizer.zero_grad()
batch_loss.backward()
nn.utils.clip_grad_value_(model.parameters(), 0.1)
optimizer.step()
pbar.update(imgs.shape[0])
if global_step % (len(train_labeled_dataset) // (2 * batch_size)) == 0:
writer.add_images('images/train', imgs, global_step)
writer.add_images('images/train_reco', reco, global_step)
global_step += 1
if optimizer.param_groups[0]['lr']<=2e-8:
print('Converge')
scheduler.step()
writer.add_scalar('learning_rate', optimizer.param_groups[0]['lr'], global_step)
# save checkpoint
print("Epoch checkpoint")
try:
os.mkdir(dir_checkpoint)
logging.info('Created checkpoint directory')
except OSError:
pass
torch.save(model.state_dict(),
dir_checkpoint + 'UNet.pth')
logging.info(f'Checkpoint {epoch + 1} saved !')
writer.close()
if __name__ == '__main__':
logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s')
args = get_args()
device = torch.device('cuda:'+str(args.gpu) if torch.cuda.is_available() else 'cpu')
logging.info(f'Using device {device}')
torch.manual_seed(14)
if device.type == 'cuda':
torch.cuda.manual_seed(14)
train_net(args)