-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathutils.py
304 lines (248 loc) · 10.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import os
import glob
import yaml
import torch
import addict
import shutil
import imageio
import argparse
import functools
import numpy as np
# torch.autograd.set_detect_anomaly(True)
class ForceKeyErrorDict(addict.Dict):
def __missing__(self, name):
raise KeyError(name)
def load_yaml(path, default_path=None):
with open(path, encoding='utf8') as yaml_file:
config_dict = yaml.load(yaml_file, Loader=yaml.FullLoader)
config = ForceKeyErrorDict(**config_dict)
if default_path is not None and path != default_path:
with open(default_path, encoding='utf8') as default_yaml_file:
default_config_dict = yaml.load(
default_yaml_file, Loader=yaml.FullLoader)
main_config = ForceKeyErrorDict(**default_config_dict)
# def overwrite(output_config, update_with):
# for k, v in update_with.items():
# if not isinstance(v, dict):
# output_config[k] = v
# else:
# overwrite(output_config[k], v)
# overwrite(main_config, config)
# simpler solution
main_config.update(config)
config = main_config
return config
def save_config(datadict: ForceKeyErrorDict, path: str):
datadict.training.ckpt_file = None
datadict.training.pop('exp_dir')
with open(path, 'w', encoding='utf8') as outfile:
yaml.dump(datadict.to_dict(), outfile, default_flow_style=False)
def update_config(config, unknown):
# update config given args
for idx, arg in enumerate(unknown):
if arg.startswith("--"):
if (':') in arg:
k1, k2 = arg.replace("--", "").split(':')
argtype = type(config[k1][k2])
if argtype == bool:
v = unknown[idx+1].lower() == 'true'
else:
if config[k1][k2] is not None:
v = type(config[k1][k2])(unknown[idx+1])
else:
v = unknown[idx+1]
print(f'Changing {k1}:{k2} ---- {config[k1][k2]} to {v}')
config[k1][k2] = v
else:
k = arg.replace('--', '')
v = unknown[idx+1]
argtype = type(config[k])
print(f'Changing {k} ---- {config[k]} to {v}')
config[k] = v
return config
def cond_mkdir(path):
if not os.path.exists(path):
os.makedirs(path)
def lin2img(tensor, H, W, batched=False, B=None):
*_, num_samples, channels = tensor.shape
assert num_samples == H * W
if batched:
if B is None:
B = tensor.shape[0]
else:
tensor = tensor.view([B, num_samples//B, channels])
return tensor.permute(0, 2, 1).view([B, channels, H, W])
else:
return tensor.permute(1, 0).view([channels, H, W])
def count_trainable_parameters(model):
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
return sum([np.prod(p.size()) for p in model_parameters])
def backup(backup_dir):
""" automatic backup codes
"""
print("backing up... ", flush=True, end="")
special_files_to_copy = []
filetypes_to_copy = [".py"]
subdirs_to_copy = ["", "dataio/", "vis/", "models/"]
this_file = os.path.realpath(__file__)
this_dir = os.path.dirname(this_file) + "/"
cond_mkdir(backup_dir)
# special files
[
cond_mkdir(os.path.join(backup_dir, os.path.split(file)[0]))
for file in special_files_to_copy
]
[
shutil.copyfile(
os.path.join(this_dir, file), os.path.join(backup_dir, file)
)
for file in special_files_to_copy
]
# dirs
for subdir in subdirs_to_copy:
cond_mkdir(os.path.join(backup_dir, subdir))
files = os.listdir(os.path.join(this_dir, subdir))
files = [
file
for file in files
if os.path.isfile(os.path.join(this_dir, subdir, file))
and file[file.rfind("."):] in filetypes_to_copy
]
[
shutil.copyfile(
os.path.join(this_dir, subdir, file),
os.path.join(backup_dir, subdir, file),
)
for file in files
]
print("done.", flush=True)
def save_video(imgs, fname, as_gif=False, fps=24, quality=8, already_np=False, gif_scale:int =512):
"""[summary]
Args:
imgs ([type]): [0 to 1]
fname ([type]): [description]
as_gif (bool, optional): [description]. Defaults to False.
fps (int, optional): [description]. Defaults to 24.
quality (int, optional): [description]. Defaults to 8.
"""
gif_scale = int(gif_scale)
# convert to np.uint8
if not already_np:
imgs = (255 * np.clip(
imgs.permute(0, 2, 3, 1).detach().cpu().numpy(), 0, 1))\
.astype(np.uint8)
imageio.mimwrite(fname, imgs, fps=fps, quality=quality)
if as_gif: # save as gif, too
os.system(f'ffmpeg -i {fname} -r 15 '
f'-vf "scale={gif_scale}:-1,split[s0][s1];[s0]palettegen[p];[s1][p]paletteuse" {os.path.splitext(fname)[0] + ".gif"}')
def gallery(array, ncols=3):
nindex, height, width, intensity = array.shape
nrows = nindex//ncols
# assert nindex == nrows*ncols
if nindex > nrows*ncols:
nrows += 1
array = np.concatenate([array, np.zeros([nrows*ncols-nindex, height, width, intensity])])
# want result.shape = (height*nrows, width*ncols, intensity)
result = (array.reshape(nrows, ncols, height, width, intensity)
.swapaxes(1,2)
.reshape(height*nrows, width*ncols, intensity))
return result
def partialclass(cls, *args, **kwds):
class NewCls(cls):
__init__ = functools.partialmethod(cls.__init__, *args, **kwds)
NewCls.__name__ = cls.__name__ # to preserve old class name.
return NewCls
# modified from tensorboardX
def figure_to_image(figures, close=True):
"""Render matplotlib figure to numpy format.
Note that this requires the ``matplotlib`` package.
Args:
figure (matplotlib.pyplot.figure) or list of figures: figure or a list of figures
close (bool): Flag to automatically close the figure
Returns:
numpy.array: image in [CHW] order
"""
import numpy as np
try:
import matplotlib.pyplot as plt
import matplotlib.backends.backend_agg as plt_backend_agg
except ModuleNotFoundError:
print('please install matplotlib')
def render_to_rgb(figure):
canvas = plt_backend_agg.FigureCanvasAgg(figure)
canvas.draw()
data = np.frombuffer(canvas.buffer_rgba(), dtype=np.uint8)
w, h = figure.canvas.get_width_height()
image_hwc = data.reshape([h, w, 4])[:, :, 0:3]
# image_chw = np.moveaxis(image_hwc, source=2, destination=0)
if close:
plt.close(figure)
return image_hwc
if isinstance(figures, list):
images = [render_to_rgb(figure) for figure in figures]
return np.stack(images)
else:
image = render_to_rgb(figures)
return image
def find_files(dir, exts=['*.png', '*.jpg']):
if os.path.isdir(dir):
# types should be ['*.png', '*.jpg']
files_grabbed = []
for ext in exts:
files_grabbed.extend(glob.glob(os.path.join(dir, ext)))
if len(files_grabbed) > 0:
files_grabbed = sorted(files_grabbed)
return files_grabbed
else:
return []
def create_args_parser():
parser = argparse.ArgumentParser()
# standard configs
parser.add_argument('--config', type=str, default=None, help='Path to config file.')
parser.add_argument('--load_dir', type=str, default=None, help='Directory of experiment to load.')
return parser
def load_config(args, unknown, base_config_path=os.path.join('configs', 'base.yaml')):
''' overwrite seq
command line param --over--> args.config --over--> default config yaml
'''
assert (args.config is not None) != (args.load_dir is not None), "you must specify ONLY one in 'config' or 'load_dir' "
if args.load_dir is not None:
assert args.config is None, "given --config will not be used when given --load_dir"
assert '--expname' not in unknown, "given --expname with --load_dir will lead to unexpected behavior."
#---------------
# if loading from a dir, do not use base.yaml as the default;
#---------------
config_path = os.path.join(args.load_dir, 'config.yaml')
config = load_yaml(config_path, default_path=None)
# use configs given by command line to further overwrite current config
config = update_config(config, unknown)
# use the loading directory as the experiment path
config.training.exp_dir = args.load_dir
print("=> Loading previous experiments in: {}".format(config.training.exp_dir))
else:
#---------------
# if loading from a config file
# use base.yaml as default
#---------------
config = load_yaml(args.config, default_path=base_config_path)
# use configs given by command line to further overwrite current config
config = update_config(config, unknown)
# use the expname and log_root_dir to get the experiement directory
config.training.exp_dir = os.path.join(config.training.log_root_dir, config.expname)
# # device_ids: -1 will be parsed as using all available cuda device
# # device_ids: [] will be parsed as using all available cuda device
if (type(config.device_ids) == int and config.device_ids == -1) \
or (type(config.device_ids) == list and len(config.device_ids) == 0):
config.device_ids = list(range(torch.cuda.device_count()))
# # e.g. device_ids: 0 will be parsed as device_ids [0]
elif isinstance(config.device_ids, int):
config.device_ids = [config.device_ids]
# # e.g. device_ids: 0,1 will be parsed as device_ids [0,1]
elif isinstance(config.device_ids, str):
config.device_ids = [int(m) for m in config.device_ids.split(',')]
# add other configs in args to config
other_dict = vars(args)
other_dict.pop('config')
other_dict.pop('load_dir')
config.update(other_dict)
return config