-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathtrain.py
490 lines (408 loc) · 18.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
import utils
from logger import Logger
from checkpoints import CheckpointIO
from dataio.dataset import NeRFMMDataset
from models.frameworks import create_model
from models.volume_rendering import volume_render
from models.perceptual_model import get_perceptual_loss
from models.cam_params import CamParams, get_rays, plot_cam_rot, plot_cam_trans
import os
import time
import copy
import functools
from tqdm import tqdm
from typing import Optional
from collections import OrderedDict
import torch
import torch.nn as nn
from torch import optim
from torch.utils.data.dataloader import DataLoader
def mse_loss(source, target, return_mse_img=False):
mse = torch.mean((source - target) ** 2, dim=-1)
loss = mse.mean(dim=-1)
if return_mse_img:
return loss, mse
else:
return loss
class NeRFMinusMinusTrainer(nn.Module):
def __init__(
self,
model,
perceptual_net: Optional[nn.Module] = None):
super().__init__()
# necessary to duplicate weights correctly across gpus. hacky workaround
self.model = model
if perceptual_net is not None:
self.perceptual_net = perceptual_net
def forward(self,
args,
rays_o: torch.Tensor,
rays_d: torch.Tensor,
target_s: torch.Tensor,
render_kwargs_train: dict,
H=None, W=None):
render_kwargs_train["network_fn"] = self.model.get_coarse_fn()
render_kwargs_train["network_fine"] = self.model.get_fine_fn()
losses = OrderedDict()
rgb, depth, extras = volume_render(
rays_o=rays_o,
rays_d=rays_d,
detailed_output=True,
**render_kwargs_train)
# reconstruction loss
# could be rendered as an mse image
losses['loss_img'], mse = mse_loss(rgb, target_s, True)
losses['loss_img'] *= args.training.w_img
# perceptual loss
if args.training.w_perceptual > 0:
assert H is not None and W is not None
def preprocess(img):
return (torch.reshape(img,[-1, H, W, 3])).permute(0, 3, 1, 2)
target_reshaped = preprocess(target_s)
losses['loss_percpt'] = args.training.w_perceptual * \
get_perceptual_loss(
self.perceptual_net,
preprocess(rgb), target_reshaped)
loss = 0
for v in losses.values():
loss += v
losses['total'] = loss
return OrderedDict(
[('losses', losses),
('extras', extras)]
)
def get_parallelized_training_function(
device_ids=None,
wrapper_cls=NeRFMinusMinusTrainer,
**kwargs):
if device_ids is None or len(device_ids) == 1:
# for single gpus, no parallel training.
return wrapper_cls(**kwargs)
else:
return nn.DataParallel(
wrapper_cls(**kwargs),
device_ids=device_ids
)
def main_function(args):
device_ids = args.device_ids
# for nn.DataParallel, the model and original input must be on device_ids[0] device
device = "cuda:{}".format(device_ids[0])
exp_dir = args.training.exp_dir
print("=> Experiments dir: {}".format(exp_dir))
# logger
logger = Logger(
log_dir=exp_dir,
img_dir=os.path.join(exp_dir, 'imgs'),
monitoring='tensorboard',
monitoring_dir=os.path.join(exp_dir, 'events'))
# backup codes
utils.backup(os.path.join(exp_dir, 'backup'))
# save configs
utils.save_config(args, os.path.join(exp_dir, 'config.yaml'))
# checkpoints
checkpoint_io = CheckpointIO(checkpoint_dir=os.path.join(exp_dir, 'ckpts'))
# datasets: just pure images.
dataset = NeRFMMDataset(args.data.data_dir, downscale=args.data.downscale)
dataloader = DataLoader(dataset,
batch_size=args.data.get('batch_size', None),
shuffle=True)
valloader = copy.deepcopy(dataloader)
# Camera parameters to optimize
so3_representation = args.model.so3_representation
cam_param = CamParams.from_config(
num_imgs=len(dataset),
H0=dataset.H, W0=dataset.W,
so3_repr=so3_representation,
intr_repr=args.model.intrinsics_representation,
initial_fov=args.model.initial_fov)
# Create nerf model
model, render_kwargs_train, render_kwargs_test, grad_vars = create_model(
args, model_type=args.model.framework)
# move models to GPU
model.to(device)
cam_param.to(device)
print(model)
print("=> Nerf params: ", utils.count_trainable_parameters(model))
def build_optimizer():
# Create optimizer
optimizer_nerf = optim.Adam(
params=grad_vars, lr=args.training.lr_nerf, betas=(0.9, 0.999)
)
# optimizer_param = optim.Adam(
# params=cam_param.parameters(), lr=args.training.lr_param, betas=(0.9, 0.999)
# )
optimizer_intr = optim.Adam(
params=[cam_param.f], lr=args.training.lr_param, betas=(0.9, 0.999)
)
optimizer_extr = optim.Adam(
params=[cam_param.phi, cam_param.t], lr=args.training.lr_param, betas=(0.9, 0.999)
)
return optimizer_nerf, optimizer_intr, optimizer_extr
def build_lr_scheduler(op_nerf, op_intr, op_extr, last_epoch=-1):
lr_scheduler_nerf = optim.lr_scheduler.StepLR(
op_nerf,
step_size=args.training.step_size_nerf,
gamma=args.training.lr_anneal_nerf,
last_epoch=last_epoch
)
lr_scheduler_intr = optim.lr_scheduler.StepLR(
op_intr,
step_size=args.training.step_size_param,
gamma=args.training.lr_anneal_param
)
lr_scheduler_extr = optim.lr_scheduler.StepLR(
op_extr,
step_size=args.training.step_size_param,
gamma=args.training.lr_anneal_param
)
return lr_scheduler_nerf, lr_scheduler_intr, lr_scheduler_extr
optimizer_nerf, optimizer_intr, optimizer_extr = build_optimizer()
# Register modules to checkpoint
checkpoint_io.register_modules(
model=model,
optimizer_nerf=optimizer_nerf,
# optimizer_param=optimizer_param,
optimizer_intr=optimizer_intr,
optimizer_extr=optimizer_extr,
cam_param=cam_param
)
# Load checkpoints
load_dict = checkpoint_io.load_file(
args.training.ckpt_file,
ignore_keys=args.training.ckpt_ignore_keys,
only_use_keys=args.training.ckpt_only_use_keys)
logger.load_stats('stats.p') # this will be used for plotting
it = load_dict.get('global_step', -1)
epoch_idx = load_dict.get('epoch_idx', 0)
lr_scheduler_nerf, lr_scheduler_intr, lr_scheduler_extr = build_lr_scheduler(
optimizer_nerf, optimizer_intr, optimizer_extr, last_epoch=epoch_idx-1)
# perceptual net model
perceptual_net = None
if args.training.w_perceptual > 0:
from models.perceptual_model import CLIP_for_Perceptual
perceptual_net = CLIP_for_Perceptual()
# from models.perceptual_model import VGG16_for_Perceptual
# perceptual_net = VGG16_for_Perceptual()
# Training loop
trainer = get_parallelized_training_function(
model=model,
perceptual_net=perceptual_net,
device_ids=device_ids,
)
def do_nvs(ep):
if ep <= 200:
return ep % 5 == 0
elif ep <= 2000:
return ep % 100 == 0
else:
return ep % 500 == 0
def do_eval(ep):
if ep <= 200:
return ep % 5 == 0
else:
return ep % 20 == 0
def train(num_ep, stage='train', ep_offset=0): # choose stage between [pre, refine]
nonlocal epoch_idx # global epoch_idx
nonlocal it
if stage == 'pre':
stage_desc = "pre-train stage"
elif stage == 'train':
stage_desc = "train stage"
else:
raise RuntimeError("wrong stage")
tstart = t0 = time.time()
with tqdm(range(num_ep), desc=stage_desc) as pbar:
pbar.update(epoch_idx - ep_offset)
while epoch_idx - ep_offset < num_ep:
local_epoch_idx = epoch_idx - ep_offset
pbar.update()
# print('Start epoch {}'.format(local_epoch_idx))
# with tqdm(dataloader) as pbar:
for ind, img in dataloader:
t_it = time.time()
it += 1
pbar.set_postfix(it=it, ep=epoch_idx)
R, t, fx, fy = cam_param(ind.to(device).squeeze(-1))
# [(B,) N_rays, 3], [(B,) N_rays, 3], [(B,) N_rays]
rays_o, rays_d, select_inds = get_rays(
R, t, fx, fy, dataset.H, dataset.W,
args.data.N_rays,
representation=so3_representation)
# [(B,) N_rays, 3]
target_rgb = torch.gather(img.to(device), -2, torch.stack(3*[select_inds],-1))
ret = trainer(
args,
rays_o=rays_o,
rays_d=rays_d,
target_s=target_rgb,
render_kwargs_train=render_kwargs_train
)
losses = ret['losses']
extras = ret['extras']
for k, v in losses.items():
# print("{}:{} - > {}".format(k, v.shape, v.mean().shape))
losses[k] = torch.mean(v)
optimizer_nerf.zero_grad()
# optimizer_param.zero_grad()
optimizer_intr.zero_grad()
optimizer_extr.zero_grad()
losses['total'].backward()
optimizer_nerf.step()
# optimizer_param.step()
optimizer_intr.step()
optimizer_extr.step()
#-------------------
# logging
#-------------------
# log lr
logger.add('learning_rates', 'nerf', optimizer_nerf.param_groups[0]['lr'], it=it)
# logger.add('learning_rates', 'camera parameters', optimizer_param.param_groups[0]['lr'], it=it)
logger.add('learning_rates', 'camera intrinsics', optimizer_intr.param_groups[0]['lr'], it=it)
logger.add('learning_rates', 'camera extrinsics', optimizer_extr.param_groups[0]['lr'], it=it)
# log losses
for k, v in losses.items():
logger.add('losses', k, v.data.cpu().numpy().item(), it)
# log extras
# for k, v in extras.items():
names = ["rgb", "sigma"]
for n in names:
p = "whole"
key = "raw.{}".format(n)
logger.add("extras_{}".format(n), "{}.mean".format(
p), extras[key].mean().data.cpu().numpy().item(), it)
logger.add("extras_{}".format(n), "{}.min".format(
p), extras[key].min().data.cpu().numpy().item(), it)
logger.add("extras_{}".format(n), "{}.max".format(
p), extras[key].max().data.cpu().numpy().item(), it)
logger.add("extras_{}".format(n), "{}.norm".format(
p), extras[key].norm().data.cpu().numpy().item(), it)
if args.training.i_backup > 0 and it % args.training.i_backup == 0 and it > 0:
# print("Saving backup...")
checkpoint_io.save(
filename='{:08d}.pt'.format(it),
global_step=it, epoch_idx=epoch_idx)
if it == 0 or (args.training.i_save > 0 and time.time() - t0 > args.training.i_save):
# print('Saving checkpoint...')
checkpoint_io.save(
filename='latest.pt'.format(it),
global_step=it, epoch_idx=epoch_idx)
# this will be used for plotting
logger.save_stats('stats.p')
t0 = time.time()
#----------------
# things to do each epoch
#----------------
lr_scheduler_nerf.step()
# lr_scheduler_param.step()
lr_scheduler_intr.step()
lr_scheduler_extr.step()
#-------------------
# plot camera parameters
#-------------------
save_output_img = do_nvs(local_epoch_idx) or do_eval(local_epoch_idx)
logger.add_figure(plot_cam_trans(cam_param),
"camera/extr translation on xy", it, save_img=save_output_img)
logger.add_figure(plot_cam_rot(cam_param, so3_representation, 'xy'),
"camera/extr rotation about xy", it, save_img=save_output_img)
logger.add_figure(plot_cam_rot(cam_param, so3_representation, 'yz'),
"camera/extr rotation about yz", it, save_img=save_output_img)
logger.add_figure(plot_cam_rot(cam_param, so3_representation, 'xz'),
"camera/extr rotation about xz", it, save_img=save_output_img)
# log camera parameters
logger.add_vector('camera', 'extr_phi', cam_param.phi.data, it)
logger.add_vector('camera', 'extr_t', cam_param.t.data, it)
fx, fy = cam_param.get_focal()
logger.add('camera', 'fx', fx.item(), it)
logger.add('camera', 'fy', fy.item(), it)
#-------------------
# eval with gt
#-------------------
if do_eval(local_epoch_idx):
with torch.no_grad():
ind, img = next(iter(valloader))
R, t, fx, fy = cam_param(ind.to(device).squeeze(-1))
# [N_rays, 3], [N_rays, 3], [N_rays]
# when logging val images, scale the resolution to be 1/16 just to save time.
rays_o, rays_d, select_inds = get_rays(
R, t, fx/4., fy/4., dataset.H//4, dataset.W//4, -1,
representation=so3_representation)
# [N_rays, 3]
target_rgb = img.to(device)
val_rgb, val_depth, val_extras = volume_render(
rays_o=rays_o,
rays_d=rays_d,
detailed_output=True, # to return acc map and disp map
**render_kwargs_test)
to_img = functools.partial(
utils.lin2img, H=dataset.H//4, W=dataset.W//4, batched=render_kwargs_test['batched'])
logger.add_imgs(to_img(val_rgb), 'val/pred', it)
logger.add_imgs(utils.lin2img(target_rgb, H=dataset.H, W=dataset.W, batched=render_kwargs_test['batched']), 'val/gt', it)
logger.add_imgs(to_img(val_extras['disp_map'].unsqueeze(-1)), 'val/pred_disp', it)
logger.add_imgs(to_img(val_depth.unsqueeze(-1)), 'val/pred_depth', it)
logger.add_imgs(to_img(val_extras['acc_map'].unsqueeze(-1)), 'val/pred_acc', it)
#-------------------
# novel view synthesis
#-------------------
if stage != 'pre' and args.training.get('novel_view_synthesis', False) and do_nvs(local_epoch_idx):
with torch.no_grad():
# average camera extrinsics
R = cam_param.phi.data.clone().mean(0)
t = cam_param.t.data.clone().mean(0)
fx, fy = cam_param.get_focal()
fx, fy = fx.data.clone(), fy.data.clone()
# [N_rays, 3], [N_rays, 3], [N_rays]
# when logging val images, scale the resolution to be 1/16 just to save time.
rays_o, rays_d, select_inds = get_rays(
R, t, fx, fy, dataset.H, dataset.W, -1,
representation=so3_representation)
# [N_rays, 3]
target_rgb = img.to(device)
val_rgb, val_depth, val_extras = volume_render(
rays_o=rays_o,
rays_d=rays_d,
detailed_output=False, # only return rgb and depth
**render_kwargs_test)
to_img = functools.partial(
utils.lin2img, H=dataset.H, W=dataset.W, batched=render_kwargs_test['batched'])
logger.add_imgs(to_img(val_rgb), "novel_view/rgb", it)
logger.add_imgs(to_img(val_depth.unsqueeze(-1)), "novel_view/depth", it)
#------------
# update epoch index
#------------
epoch_idx += 1
num_epoch_pre = args.training.get('num_epoch_pre', 0)
if num_epoch_pre > 0:
if epoch_idx < num_epoch_pre:
#-------------
# Pre-training stage: will just use cam_param
#-------------
print('Start pre-training..., ep={}, in {}'.format(epoch_idx, exp_dir))
train(num_epoch_pre, 'pre', ep_offset=0)
#-------------
# drop all models with only cam_param left
#-------------
optimizer_nerf, optimizer_intr, optimizer_extr = build_optimizer()
lr_scheduler_nerf, lr_scheduler_intr, lr_scheduler_extr = build_lr_scheduler(
optimizer_nerf, optimizer_intr, optimizer_extr, last_epoch=epoch_idx-num_epoch_pre-1)
def weight_reset(m):
reset_parameters = getattr(m, "reset_parameters", None)
if callable(reset_parameters):
m.reset_parameters()
model.apply(weight_reset) # recursively: from children to root.
print("Start refinement... ep={}, in {}".format(epoch_idx, exp_dir))
else:
print("Start training... ep={}, in {}".format(epoch_idx, exp_dir))
train(args.training.num_epoch, 'train', ep_offset=num_epoch_pre)
final_ckpt = 'final_{:08d}.pt'.format(it)
print('Saving final to {}'.format(final_ckpt))
checkpoint_io.save(
filename=final_ckpt,
global_step=it, epoch_idx=epoch_idx)
# this will be used for plotting
logger.save_stats('stats.p')
if __name__ == "__main__":
# Arguments
parser = utils.create_args_parser()
args, unknown = parser.parse_known_args()
config = utils.load_config(args, unknown)
main_function(config)