-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess_pandaset.py
134 lines (119 loc) · 5.16 KB
/
preprocess_pandaset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# Copyright 2024 - Valeo Comfort and Driving Assistance - valeo.ai
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import json
import numpy as np
import pandas as pd
from glob import glob
from tqdm import tqdm
import pypatchworkpp as pwpp
from multiprocessing import Pool
from pyquaternion import Quaternion
from utils.utils import get_cpu_limit
from preprocess.pcd_preprocess import clusterize_pcd, grid_sample, order_segments
DATA_DIR = "datasets/pandaset/"
AUGMENTED_DIR = 'segments_gridsample'
DOWNSAMPLING_RESOLUTION = [0.05,0.05,0.05,5]
SCAN_WINDOW = 40
WHICH_PANDAR = 1 # Put 1 for PandarGT and 0 for Pandar64
def heading_position_to_mat(heading, position):
"""
Convert pose to transformation matrix.
:param translation: <np.float32: 3>. Translation in x, y, z.
:param rotation: Rotation in quaternions (w ri rj rk).
:param inverse: Whether to compute inverse transform matrix.
:return: <np.float32: 4, 4>. Transformation matrix.
"""
transform_matrix = np.eye(4)
quat = np.array([heading["w"], heading["x"], heading["y"], heading["z"]])
pos = np.array([position["x"], position["y"], position["z"]])
rotation = Quaternion(quat)
transform_matrix[:3, :3] = rotation.rotation_matrix
transform_matrix[:3, 3] = np.transpose(np.array(pos))
return transform_matrix
def create_list():
# List of scenes
scene_list = np.sort(glob(DATA_DIR + "/*/lidar"))
which_pandar = "pandar_64" if WHICH_PANDAR == 0 else "pandar_gt"
points_datapath = []
for scene in scene_list:
scene_id = scene.split('/')[-2]
os.makedirs(os.path.join(DATA_DIR, 'assets', which_pandar, AUGMENTED_DIR, scene_id, 'lidar'), exist_ok=True)
for w in range(0, 80, SCAN_WINDOW):
points_datapath.append([scene + f"/{i:02d}.pkl.gz" for i in range(w, w + SCAN_WINDOW)])
return points_datapath
def aggregate_pcds_4d(frames):
# load empty pcd point cloud to aggregate
points_set = np.empty((0, 4))
num_points = []
for t, frame in enumerate(frames):
p_set = pd.read_pickle(frame).values
where_pandar = p_set[:, -1] == WHICH_PANDAR
p_set = p_set[where_pandar, :4]
# load the next t scan, apply pose and aggregate
p_set[:, 3] = t
num_points.append(len(p_set))
points_set = np.vstack([points_set, p_set])
return points_set, num_points
def segment(input):
which_pandar = "pandar64" if WHICH_PANDAR == 0 else "pandargt"
index, frames = input
scene_id = frames[0].split('/')[-3]
points_agg, num_points = aggregate_pcds_4d(frames)
ground_label = np.empty(0, dtype=bool)
params = pwpp.Parameters()
params.sensor_height = 0.
PatchworkPLUSPLUS = pwpp.patchworkpp(params)
file_pose = os.path.join(DATA_DIR, scene_id, "lidar/poses.json")
with open(file_pose, "r") as f:
poses = json.load(f)
for frame in frames:
frame_id = frame.split('/')[-1].split('.')[0]
pc = pd.read_pickle(frame).values
where_pandar = pc[:, -1] == WHICH_PANDAR
pc = pc[where_pandar, :4]
# Transform to ego coordinate system
pose = poses[int(frame_id)]
transform_matrix = heading_position_to_mat(pose["heading"], pose["position"])
transform_matrix = np.linalg.inv(transform_matrix)
pc[:, :3] = pc[:, :3] @ transform_matrix[:3, :3].T
pc[:, :3] += transform_matrix[:3, [3]].T
# Extra shift along z-axis to have road approximately 1.7 m below the center of coord system
pc[:, 2] -= 1.6
PatchworkPLUSPLUS.estimateGround(pc)
g_set = np.full(pc.shape[0], False, dtype=bool)
g_set[PatchworkPLUSPLUS.getGroundIndices()] = True
ground_label = np.concatenate([ground_label, g_set])
points_ds, indexes, inverse_indexes = grid_sample(points_agg, DOWNSAMPLING_RESOLUTION, temporal_weight=0.03)
ground_label = ground_label[indexes]
del PatchworkPLUSPLUS
segments = clusterize_pcd(points_ds, ground_label, min_samples=1, min_cluster_size=300)
segments_agg = segments[inverse_indexes]
segments_agg = order_segments(segments_agg, min_points=50)
idx = 0
for frame, num in zip(frames, num_points):
fname = frame.replace('pandaset', f'pandaset/assets/{which_pandar}/{AUGMENTED_DIR}')
fname = fname[:-7] + f"_{index}.seg"
segments = segments_agg[idx:idx + num]
segments.tofile(fname)
idx += num
if __name__ == "__main__":
points_datapath = create_list()
frames = []
for i, pdp in enumerate(points_datapath):
frames.append((i, pdp))
num_cpus = get_cpu_limit()
print(f"Using {num_cpus} threads")
with Pool(num_cpus) as p:
list(tqdm(p.imap_unordered(segment, frames), total=len(frames)))