-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathmain.py
107 lines (91 loc) · 5.29 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
# Main file to launch training or evaluation
import os
import random
import numpy as np
import argparse
import torch
from torch.distributed import init_process_group, destroy_process_group
from Trainer.vit import MaskGIT
def main(args):
""" Main function:Train or eval MaskGIT """
maskgit = MaskGIT(args)
if args.test_only: # Evaluate the networks
maskgit.eval()
elif args.debug: # custom code for testing inference
import torchvision.utils as vutils
from torchvision.utils import save_image
with torch.no_grad():
labels, name = [1, 7, 282, 604, 724, 179, 681, 367, 635, random.randint(0, 999)] * 1, "r_row"
labels = torch.LongTensor(labels).to(args.device)
sm_temp = 1.3 # Softmax Temperature
r_temp = 7 # Gumbel Temperature
w = 9 # Classifier Free Guidance
randomize = "linear" # Noise scheduler
step = 32 # Number of step
sched_mode = "arccos" # Mode of the scheduler
# Generate sample
gen_sample, _, _ = maskgit.sample(nb_sample=labels.size(0), labels=labels, sm_temp=sm_temp, r_temp=r_temp, w=w,
randomize=randomize, sched_mode=sched_mode, step=step)
gen_sample = vutils.make_grid(gen_sample, nrow=5, padding=2, normalize=True)
# Save image
save_image(gen_sample, f"saved_img/sched_{sched_mode}_step={step}_temp={sm_temp}"
f"_w={w}_randomize={randomize}_{name}.jpg")
else: # Begin training
maskgit.fit()
def ddp_setup():
""" Initialization of the multi_gpus training"""
init_process_group(backend="nccl")
torch.cuda.set_device(int(os.environ["LOCAL_RANK"]))
def launch_multi_main(args):
""" Launch multi training"""
ddp_setup()
args.device = int(os.environ["LOCAL_RANK"])
args.is_master = args.device == 0
main(args)
destroy_process_group()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--data", type=str, default="imagenet", help="dataset on which dataset to train")
parser.add_argument("--data-folder", type=str, default="", help="folder containing the dataset")
parser.add_argument("--vqgan-folder", type=str, default="", help="folder of the pretrained VQGAN")
parser.add_argument("--vit-folder", type=str, default="", help="folder where to save the Transformer")
parser.add_argument("--writer-log", type=str, default="", help="folder where to store the logs")
parser.add_argument("--sched_mode", type=str, default="arccos", help="scheduler mode whent sampling")
parser.add_argument("--grad-cum", type=int, default=1, help="accumulate gradient")
parser.add_argument('--channel', type=int, default=3, help="rgb or black/white image")
parser.add_argument("--num_workers", type=int, default=8, help="number of workers")
parser.add_argument("--step", type=int, default=8, help="number of step for sampling")
parser.add_argument('--seed', type=int, default=42, help="fix seed")
parser.add_argument("--epoch", type=int, default=300, help="number of epoch")
parser.add_argument('--img-size', type=int, default=256, help="image size")
parser.add_argument("--bsize", type=int, default=256, help="batch size")
parser.add_argument("--mask-value", type=int, default=1024, help="number of epoch")
parser.add_argument("--lr", type=float, default=1e-4, help="learning rate to train the transformer")
parser.add_argument("--cfg_w", type=float, default=3, help="classifier free guidance wight")
parser.add_argument("--r_temp", type=float, default=4.5, help="Gumbel noise temperature when sampling")
parser.add_argument("--sm_temp", type=float, default=1., help="temperature before softmax when sampling")
parser.add_argument("--drop-label", type=float, default=0.1, help="drop rate for cfg")
parser.add_argument("--test-only", action='store_true', help="only evaluate the model")
parser.add_argument("--resume", action='store_true', help="resume training of the model")
parser.add_argument("--debug", action='store_true', help="debug")
args = parser.parse_args()
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
args.iter = 0
args.global_epoch = 0
if args.seed > 0: # Set the seed for reproducibility
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
torch.backends.cudnn.enable = False
torch.backends.cudnn.deterministic = True
world_size = torch.cuda.device_count()
if world_size > 1: # launch multi training
print(f"{world_size} GPU(s) found, launch multi-gpus training")
args.is_multi_gpus = True
launch_multi_main(args)
else: # launch single Gpu training
print(f"{world_size} GPU found")
args.is_master = True
args.is_multi_gpus = False
main(args)