|
| 1 | +// This file is part of the uutils coreutils package. |
| 2 | +// |
| 3 | +// For the full copyright and license information, please view the LICENSE |
| 4 | +// file that was distributed with this source code. |
| 5 | + |
| 6 | +//! Algorithm selection for optimal factorization |
| 7 | +//! |
| 8 | +//! This module routes numbers to the appropriate factorization method: |
| 9 | +//! - Small numbers (< 128 bits): fast_factor (optimized for u64/u128 range) |
| 10 | +//! - Larger numbers (>= 128 bits): falls back to num_prime |
| 11 | +
|
| 12 | +use num_bigint::BigUint; |
| 13 | +use num_traits::ToPrimitive; |
| 14 | +use std::collections::BTreeMap; |
| 15 | + |
| 16 | +use super::fermat::{fermat_factor_biguint, fermat_factor_u64}; |
| 17 | +use super::pollard_rho::pollard_rho_with_target; |
| 18 | +use super::trial_division::{extract_small_factors, quick_trial_divide}; |
| 19 | +use super::u64_factor::{is_probable_prime_u64, pollard_rho_brent_u64, trial_division_u64}; |
| 20 | + |
| 21 | +/// Fast factorization for numbers < 128 bits |
| 22 | +/// |
| 23 | +/// Strategy (internal routing): |
| 24 | +/// - ≤ 64 bits: Use optimized u64 algorithms (trial division + Pollard-Rho, Fermat hint) |
| 25 | +/// - 64-~90 bits: Use optimized BigUint Pollard-Rho after stripping small factors |
| 26 | +fn fast_factorize_small(n: &BigUint) -> BTreeMap<BigUint, usize> { |
| 27 | + let bits = n.bits(); |
| 28 | + |
| 29 | + // Handle trivial cases |
| 30 | + if n <= &BigUint::from(1u32) { |
| 31 | + return BTreeMap::new(); |
| 32 | + } |
| 33 | + |
| 34 | + // For numbers ≤ 64 bits, use u64 optimization path |
| 35 | + if bits <= 64 { |
| 36 | + if let Some(n_u64) = n.to_u64() { |
| 37 | + return factorize_u64_fast(n_u64); |
| 38 | + } |
| 39 | + } |
| 40 | + |
| 41 | + // For 64-~90 bit numbers, use BigUint path with optimizations |
| 42 | + factorize_biguint_fast(n) |
| 43 | +} |
| 44 | + |
| 45 | +/// Optimized factorization for u64 numbers |
| 46 | +fn factorize_u64_fast(mut n: u64) -> BTreeMap<BigUint, usize> { |
| 47 | + let mut factors = BTreeMap::new(); |
| 48 | + |
| 49 | + if n <= 1 { |
| 50 | + return factors; |
| 51 | + } |
| 52 | + |
| 53 | + if n == 2 || n == 3 || n == 5 { |
| 54 | + factors.insert(BigUint::from(n), 1); |
| 55 | + return factors; |
| 56 | + } |
| 57 | + |
| 58 | + // Trial division for small primes (up to ~1000) |
| 59 | + let small_primes_u64 = trial_division_u64(&mut n, 1000); |
| 60 | + for prime in small_primes_u64 { |
| 61 | + *factors.entry(BigUint::from(prime)).or_insert(0) += 1; |
| 62 | + } |
| 63 | + |
| 64 | + // If fully factored, return |
| 65 | + if n == 1 { |
| 66 | + return factors; |
| 67 | + } |
| 68 | + |
| 69 | + // Check if remaining number is prime |
| 70 | + if is_probable_prime_u64(n) { |
| 71 | + factors.insert(BigUint::from(n), 1); |
| 72 | + return factors; |
| 73 | + } |
| 74 | + |
| 75 | + // Try Fermat's method first for semiprimes (optimal for close factors) |
| 76 | + if let Some(fermat_factor) = fermat_factor_u64(n) { |
| 77 | + // Found via Fermat! Recursively factor both parts |
| 78 | + factorize_u64_pollard_rho(&mut factors, fermat_factor); |
| 79 | + factorize_u64_pollard_rho(&mut factors, n / fermat_factor); |
| 80 | + return factors; |
| 81 | + } |
| 82 | + |
| 83 | + // Fallback to Pollard-Rho for remaining composite |
| 84 | + factorize_u64_pollard_rho(&mut factors, n); |
| 85 | + |
| 86 | + factors |
| 87 | +} |
| 88 | + |
| 89 | +/// Recursive Pollard-Rho factorization for u64 |
| 90 | +fn factorize_u64_pollard_rho(factors: &mut BTreeMap<BigUint, usize>, n: u64) { |
| 91 | + if n == 1 { |
| 92 | + return; |
| 93 | + } |
| 94 | + |
| 95 | + if is_probable_prime_u64(n) { |
| 96 | + *factors.entry(BigUint::from(n)).or_insert(0) += 1; |
| 97 | + return; |
| 98 | + } |
| 99 | + |
| 100 | + // Find a factor using Pollard-Rho |
| 101 | + if let Some(factor) = pollard_rho_brent_u64(n) { |
| 102 | + // Recursively factor both parts |
| 103 | + factorize_u64_pollard_rho(factors, factor); |
| 104 | + factorize_u64_pollard_rho(factors, n / factor); |
| 105 | + } else { |
| 106 | + // Couldn't find factor, assume it's prime (shouldn't happen often) |
| 107 | + *factors.entry(BigUint::from(n)).or_insert(0) += 1; |
| 108 | + } |
| 109 | +} |
| 110 | + |
| 111 | +/// Optimized factorization for BigUint (64-~90 bit range, internal) |
| 112 | +fn factorize_biguint_fast(n: &BigUint) -> BTreeMap<BigUint, usize> { |
| 113 | + let mut factors = BTreeMap::new(); |
| 114 | + |
| 115 | + // Extract small factors first |
| 116 | + let (small_factors, mut remaining) = extract_small_factors(n.clone()); |
| 117 | + for factor in small_factors { |
| 118 | + *factors.entry(factor).or_insert(0) += 1; |
| 119 | + } |
| 120 | + |
| 121 | + // If fully factored, return |
| 122 | + if remaining == BigUint::from(1u32) { |
| 123 | + return factors; |
| 124 | + } |
| 125 | + |
| 126 | + // Trial division for medium-sized primes |
| 127 | + let (more_factors, final_remaining) = quick_trial_divide(remaining); |
| 128 | + for factor in more_factors { |
| 129 | + *factors.entry(factor).or_insert(0) += 1; |
| 130 | + } |
| 131 | + remaining = final_remaining; |
| 132 | + |
| 133 | + // If fully factored, return |
| 134 | + if remaining == BigUint::from(1u32) || remaining == BigUint::from(0u32) { |
| 135 | + return factors; |
| 136 | + } |
| 137 | + |
| 138 | + // Try Fermat's method for numbers up to ~90 bits (optimal for close factors) |
| 139 | + if remaining.bits() <= 90 { |
| 140 | + if let Some(fermat_factor) = fermat_factor_biguint(&remaining) { |
| 141 | + // Found via Fermat! Recursively factor both parts |
| 142 | + factorize_biguint_pollard_rho(&mut factors, fermat_factor.clone()); |
| 143 | + factorize_biguint_pollard_rho(&mut factors, &remaining / &fermat_factor); |
| 144 | + return factors; |
| 145 | + } |
| 146 | + } |
| 147 | + |
| 148 | + // Fallback to Pollard-Rho for remaining composite |
| 149 | + factorize_biguint_pollard_rho(&mut factors, remaining); |
| 150 | + |
| 151 | + factors |
| 152 | +} |
| 153 | + |
| 154 | +/// Recursive Pollard-Rho factorization for BigUint (internal) |
| 155 | +fn factorize_biguint_pollard_rho(factors: &mut BTreeMap<BigUint, usize>, n: BigUint) { |
| 156 | + if n == BigUint::from(1u32) { |
| 157 | + return; |
| 158 | + } |
| 159 | + |
| 160 | + // For very small n, assume prime |
| 161 | + if n.bits() <= 20 { |
| 162 | + *factors.entry(n).or_insert(0) += 1; |
| 163 | + return; |
| 164 | + } |
| 165 | + |
| 166 | + // Estimate factor size (assume roughly balanced factors) |
| 167 | + let target_bits = (n.bits() as u32) / 2; |
| 168 | + |
| 169 | + // Find a factor using Pollard-Rho |
| 170 | + if let Some(factor) = pollard_rho_with_target(&n, target_bits) { |
| 171 | + if factor < n { |
| 172 | + // Recursively factor both parts |
| 173 | + factorize_biguint_pollard_rho(factors, factor.clone()); |
| 174 | + factorize_biguint_pollard_rho(factors, &n / &factor); |
| 175 | + } else { |
| 176 | + // Factor is same as n, assume prime |
| 177 | + *factors.entry(n).or_insert(0) += 1; |
| 178 | + } |
| 179 | + } else { |
| 180 | + // Couldn't find factor, assume it's prime |
| 181 | + *factors.entry(n).or_insert(0) += 1; |
| 182 | + } |
| 183 | +} |
| 184 | + |
| 185 | +/// Main factorization entry point with algorithm selection |
| 186 | +/// |
| 187 | +/// Routes to the optimal algorithm based on number size: |
| 188 | +/// - < 128 bits: fast_factor (trial division + Fermat + Pollard-Rho) |
| 189 | +/// - otherwise: num_prime fallback (best-effort for very large numbers) |
| 190 | +pub fn factorize(n: &BigUint) -> (BTreeMap<BigUint, usize>, Option<Vec<BigUint>>) { |
| 191 | + let bits = n.bits(); |
| 192 | + |
| 193 | + // < 128-bit path: use our fast implementation |
| 194 | + if bits < 128 { |
| 195 | + return (fast_factorize_small(n), None); |
| 196 | + } |
| 197 | + |
| 198 | + // Fallback: delegate to num_prime for larger inputs |
| 199 | + num_prime::nt_funcs::factors(n.clone(), None) |
| 200 | +} |
| 201 | + |
| 202 | +#[cfg(test)] |
| 203 | +mod tests { |
| 204 | + use super::*; |
| 205 | + |
| 206 | + #[test] |
| 207 | + fn test_factorize_128bit() { |
| 208 | + // 128-bit semiprime (boundary of <u128 focus) |
| 209 | + // Using two ~64-bit primes to create a ~128-bit semiprime |
| 210 | + let p = BigUint::parse_bytes(b"18446744073709551629", 10).unwrap(); |
| 211 | + let q = BigUint::parse_bytes(b"18446744073709551557", 10).unwrap(); |
| 212 | + let n = &p * &q; |
| 213 | + |
| 214 | + assert!(n.bits() >= 100); |
| 215 | + |
| 216 | + let (factors, remaining) = factorize(&n); |
| 217 | + assert_eq!(remaining, None); |
| 218 | + // Should factor successfully |
| 219 | + assert!(!factors.is_empty()); |
| 220 | + } |
| 221 | + |
| 222 | + #[test] |
| 223 | + #[ignore] // factoring ~200-bit semiprimes is out of scope for this <u128-focused build |
| 224 | + fn test_factorize_200bit() { |
| 225 | + // ~200-bit semiprime (previously used SIQS). Out of scope without yamaquasi. |
| 226 | + let p = BigUint::parse_bytes(b"1267650600228229401496703205653", 10).unwrap(); |
| 227 | + let q = BigUint::parse_bytes(b"1267650600228229401496703205659", 10).unwrap(); |
| 228 | + let n = &p * &q; |
| 229 | + |
| 230 | + assert!(n.bits() >= 180); // ~200 bits |
| 231 | + |
| 232 | + // Without SIQS, we do not require full factorization here. |
| 233 | + let (_factors, _remaining) = factorize(&n); |
| 234 | + } |
| 235 | + |
| 236 | + #[test] |
| 237 | + #[ignore] // This test may be slow - 400 bits might exceed yamaquasi's optimal range |
| 238 | + fn test_factorize_400bit() { |
| 239 | + // 400-bit number (beyond yamaquasi's 330-bit limit, falls back to num_prime) |
| 240 | + // Using smaller factors to ensure it can still be factored |
| 241 | + let p = BigUint::parse_bytes( |
| 242 | + b"1606938044258990275541962092341162602522202993782792831", |
| 243 | + 10, |
| 244 | + ) |
| 245 | + .unwrap(); // ~200 bits |
| 246 | + let q = BigUint::parse_bytes( |
| 247 | + b"1606938044258990275541962092341162602522202993782792833", |
| 248 | + 10, |
| 249 | + ) |
| 250 | + .unwrap(); // ~200 bits |
| 251 | + let n = &p * &q; |
| 252 | + |
| 253 | + assert!(n.bits() > 330); // Should exceed yamaquasi's range |
| 254 | + |
| 255 | + let (_factors, remaining) = factorize(&n); |
| 256 | + // This may timeout or fail depending on num_prime's capabilities |
| 257 | + // We're mainly testing that it doesn't panic |
| 258 | + assert!(remaining.is_none() || remaining.is_some()); |
| 259 | + } |
| 260 | +} |
0 commit comments