-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhoma_outgoing.c
924 lines (858 loc) · 30.2 KB
/
homa_outgoing.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
/* Copyright (c) 2019-2022 Stanford University
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/* This file contains functions related to the sender side of message
* transmission. It also contains utility functions for sending packets.
*/
#include "homa_impl.h"
/**
* set_priority() - Arrange for an outgoing packet to have a particular
* priority level.
* @skb: The packet was priority should be set.
* @hsk: Socket on which the packet will be sent.
* @priority: Priority level for the packet; must be less than
* HOMA_MAX_PRIORITIES.
*/
inline static void set_priority(struct sk_buff *skb, struct homa_sock *hsk,
int priority)
{
/* Note: this code initially specified the priority in the VLAN
* header, but as of 3/2020, this performed badly on the CloudLab
* cluster being used for testing: 100 us of extra delay occurred
* whenever a packet's VLAN priority differed from the previous
* packet. So, now we use the DSCP field in the IP header instead.
*/
hsk->inet.tos = hsk->homa->priority_map[priority]<<5;
}
/**
* homa_fill_packets() - Create one or more packets and fill them with
* data from user space.
* @hsk: Socket via which these packets will be sent.
* @peer: Peer to which the packets will be sent (needed for things like
* the MTU).
* @iter: Describes the location(s) of message data in user space.
*
* Return: Address of the first packet in a list of packets linked through
* homa_next_skb, or a negative errno if there was an error. No
* fields are set in the packet headers except for type, incoming,
* offset, and length information. homa_message_out_init will fill
* in the other fields.
*/
struct sk_buff *homa_fill_packets(struct homa_sock *hsk, struct homa_peer *peer,
struct iov_iter *iter)
{
/* Note: this function is separate from homa_message_out_init
* because it must be invoked without holding an RPC lock, and
* homa_message_out_init must sometimes be called with the lock
* held.
*/
int bytes_left, unsched;
struct sk_buff *skb;
struct sk_buff *first = NULL;
int err, mtu, max_pkt_data, gso_size, max_gso_data;
struct sk_buff **last_link;
struct dst_entry *dst;
size_t len = iter->count;
if (unlikely((iter->count > HOMA_MAX_MESSAGE_LENGTH)
|| (iter->count == 0))) {
err = -EINVAL;
goto error;
}
dst = homa_get_dst(peer, hsk);
mtu = dst_mtu(dst);
max_pkt_data = mtu - hsk->ip_header_length - sizeof(struct data_header);
if (len <= max_pkt_data) {
unsched = max_gso_data = len;
gso_size = mtu;
} else {
int bufs_per_gso;
gso_size = peer->dst->dev->gso_max_size;
if (gso_size > hsk->homa->max_gso_size)
gso_size = hsk->homa->max_gso_size;
/* Round gso_size down to an even # of mtus. */
bufs_per_gso = gso_size/mtu;
if (bufs_per_gso == 0) {
bufs_per_gso = 1;
mtu = gso_size;
max_pkt_data = mtu - hsk->ip_header_length
- sizeof(struct data_header);
}
max_gso_data = bufs_per_gso * max_pkt_data;
gso_size = bufs_per_gso * mtu;
/* Round unscheduled bytes *up* to an even number of gsos. */
unsched = hsk->homa->rtt_bytes + max_gso_data - 1;
unsched -= unsched % max_gso_data;
if (unsched > len)
unsched = len;
}
/* Copy message data from user space and form sk_buffs. Each
* sk_buff may contain multiple data_segments, each of which will
* turn into a separate packet, using either TSO in the NIC or
* GSO in software.
*/
for (bytes_left = len, last_link = &first; bytes_left > 0; ) {
struct data_header *h;
struct data_segment *seg;
int available;
/* The sizeof32(void*) creates extra space for homa_next_skb. */
skb = alloc_skb(gso_size + HOMA_SKB_EXTRA + sizeof32(void*),
GFP_KERNEL);
if (unlikely(!skb)) {
err = -ENOMEM;
goto error;
}
if (unlikely((bytes_left > max_pkt_data)
&& (max_gso_data > max_pkt_data))) {
skb_shinfo(skb)->gso_size = sizeof(struct data_segment)
+ max_pkt_data;
skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
// skb_shinfo(skb)->gso_type = 0xd; // Force software GSO
}
skb_shinfo(skb)->gso_segs = 0;
skb_reserve(skb, hsk->ip_header_length + HOMA_SKB_EXTRA);
skb_reset_transport_header(skb);
h = (struct data_header *) skb_put(skb,
sizeof(*h) - sizeof(struct data_segment));
h->common.type = DATA;
h->message_length = htonl(len);
available = max_gso_data;
/* Each iteration of the following loop adds one segment
* to the buffer.
*/
do {
int seg_size;
seg = (struct data_segment *) skb_put(skb, sizeof(*seg));
seg->offset = htonl(len - bytes_left);
if (bytes_left <= max_pkt_data)
seg_size = bytes_left;
else
seg_size = max_pkt_data;
seg->segment_length = htonl(seg_size);
seg->ack.client_id = 0;
homa_peer_get_acks(peer, 1, &seg->ack);
if (copy_from_iter(skb_put(skb, seg_size), seg_size,
iter) != seg_size) {
err = -EFAULT;
kfree_skb(skb);
goto error;
}
bytes_left -= seg_size;
(skb_shinfo(skb)->gso_segs)++;
available -= seg_size;
} while ((available > 0) && (bytes_left > 0));
h->incoming = htonl(((len - bytes_left) > unsched) ?
(len - bytes_left) : unsched);
*last_link = skb;
last_link = homa_next_skb(skb);
*last_link = NULL;
}
return first;
error:
homa_free_skbs(first);
return ERR_PTR(err);
}
/**
* homa_message_out_init() - Initializes an RPC's msgout. Doesn't actually
* send any packets.
* @rpc: RPC whose msgout is to be initialized; current contents of
* msgout are assumed to be garbage.
* @sport: Source port number to use for the message.
* @skb: First in a list of packets returned by homa_fill_packets
* @len: Total length of the message.
*/
void homa_message_out_init(struct homa_rpc *rpc, int sport, struct sk_buff *skb,
int len)
{
rpc->msgout.length = len;
rpc->msgout.packets = skb;
rpc->msgout.num_skbs = 0;
rpc->msgout.next_packet = skb;
rpc->msgout.unscheduled = rpc->hsk->homa->rtt_bytes;
rpc->msgout.granted = rpc->msgout.unscheduled;
if (rpc->msgout.granted > rpc->msgout.length)
rpc->msgout.granted = rpc->msgout.length;
rpc->msgout.sched_priority = 0;
rpc->msgout.init_cycles = get_cycles();
/* Must scan the packets to fill in header fields that weren't
* known when the packets were allocated.
*/
while (skb) {
struct data_header *h = (struct data_header *)
skb_transport_header(skb);
rpc->msgout.num_skbs++;
h->common.sport = htons(sport);
h->common.dport = htons(rpc->dport);
homa_set_doff(h);
h->common.sender_id = cpu_to_be64(rpc->id);
h->message_length = htonl(len);
h->cutoff_version = rpc->peer->cutoff_version;
h->retransmit = 0;
skb = *homa_next_skb(skb);
}
INC_METRIC(sent_msg_bytes, len);
}
/**
* homa_message_out_destroy() - Destructor for homa_message_out.
* @msgout: Structure to clean up.
*/
void homa_message_out_destroy(struct homa_message_out *msgout)
{
struct sk_buff *skb, *next;
if (msgout->length < 0)
return;
for (skb = msgout->packets; skb != NULL; skb = next) {
next = *homa_next_skb(skb);
kfree_skb(skb);
}
msgout->packets = NULL;
}
/**
* homa_xmit_control() - Send a control packet to the other end of an RPC.
* @type: Packet type, such as DATA.
* @contents: Address of buffer containing the contents of the packet.
* Only information after the common header must be valid;
* the common header will be filled in by this function.
* @length: Length of @contents (including the common header).
* @rpc: The packet will go to the socket that handles the other end
* of this RPC. Addressing info for the packet, including all of
* the fields of common_header except type, will be set from this.
*
* Return: Either zero (for success), or a negative errno value if there
* was a problem.
*/
int homa_xmit_control(enum homa_packet_type type, void *contents,
size_t length, struct homa_rpc *rpc)
{
struct common_header *h = (struct common_header *) contents;
h->type = type;
h->sport = htons(rpc->hsk->port);
h->dport = htons(rpc->dport);
h->sender_id = cpu_to_be64(rpc->id);
return __homa_xmit_control(contents, length, rpc->peer, rpc->hsk);
}
/**
* __homa_xmit_control() - Lower-level version of homa_xmit_control: sends
* a control packet.
* @contents: Address of buffer containing the contents of the packet.
* The caller must have filled in all of the information,
* including the common header.
* @length: Length of @contents.
* @peer: Destination to which the packet will be sent.
* @hsk: Socket via which the packet will be sent.
*
* Return: Either zero (for success), or a negative errno value if there
* was a problem.
*/
int __homa_xmit_control(void *contents, size_t length, struct homa_peer *peer,
struct homa_sock *hsk)
{
struct common_header *h;
int extra_bytes;
int result, priority;
struct dst_entry *dst;
struct sk_buff *skb;
/* Allocate the same size sk_buffs as for the smallest data
* packets (better reuse of sk_buffs?).
*/
dst = homa_get_dst(peer, hsk);
skb = alloc_skb(dst_mtu(dst) + HOMA_SKB_EXTRA + sizeof32(void*),
GFP_KERNEL);
if (unlikely(!skb))
return -ENOBUFS;
dst_hold(dst);
skb_dst_set(skb, dst);
skb_reserve(skb, hsk->ip_header_length + HOMA_SKB_EXTRA);
skb_reset_transport_header(skb);
h = (struct common_header *) skb_put(skb, length);
memcpy(h, contents, length);
extra_bytes = HOMA_MIN_PKT_LENGTH - length;
if (extra_bytes > 0) {
memset(skb_put(skb, extra_bytes), 0, extra_bytes);
UNIT_LOG(",", "padded control packet with %d bytes",
extra_bytes);
}
priority = hsk->homa->num_priorities-1;
skb->ooo_okay = 1;
skb_get(skb);
if (hsk->inet.sk.sk_family == AF_INET6) {
result = ip6_xmit(&hsk->inet.sk, skb, &peer->flow.u.ip6, 0,
NULL, hsk->homa->priority_map[priority] << 4, 0);
} else {
/* This will find its way to the DSCP field in the IPv4 hdr. */
hsk->inet.tos = hsk->homa->priority_map[priority]<<5;
result = ip_queue_xmit(&hsk->inet.sk, skb, &peer->flow);
}
if (unlikely(result != 0)) {
INC_METRIC(control_xmit_errors, 1);
/* It appears that ip*_xmit frees skbuffs after
* errors; the following code is to raise an alert if
* this isn't actually the case. The extra skb_get above
* and kfree_skb below are needed to do the check
* accurately (otherwise the buffer could be freed and
* its memory used for some other purpose, resulting in
* a bogus "reference count").
*/
if (refcount_read(&skb->users) > 1) {
if (hsk->inet.sk.sk_family == AF_INET6) {
printk(KERN_NOTICE "ip6_xmit didn't free "
"Homa control packet after "
"error\n");
} else {
printk(KERN_NOTICE "ip_queue_xmit didn't free "
"Homa control packet after "
"error\n");
}
}
}
kfree_skb(skb);
INC_METRIC(packets_sent[h->type - DATA], 1);
INC_METRIC(priority_bytes[priority], skb->len);
INC_METRIC(priority_packets[priority], 1);
return result;
}
/**
* homa_xmit_unknown() - Send an UNKNOWN packet to a peer.
* @skb: Buffer containing an incoming packet; identifies the peer to
* which the UNKNOWN packet should be sent.
* @hsk: Socket that should be used to send the UNKNOWN packet.
*/
void homa_xmit_unknown(struct sk_buff *skb, struct homa_sock *hsk)
{
struct common_header *h = (struct common_header *) skb->data;
struct unknown_header unknown;
struct homa_peer *peer;
struct in6_addr saddr = skb_canonical_ipv6_saddr(skb);
if (hsk->homa->verbose)
printk(KERN_NOTICE "sending UNKNOWN to peer "
"%s:%d for id %llu",
homa_print_ipv6_addr(&saddr),
ntohs(h->sport), homa_local_id(h->sender_id));
tt_record3("sending unknown to 0x%x:%d for id %llu",
tt_addr(saddr), ntohs(h->sport),
homa_local_id(h->sender_id));
unknown.common.sport = h->dport;
unknown.common.dport = h->sport;
unknown.common.sender_id = cpu_to_be64(homa_local_id(h->sender_id));
unknown.common.type = UNKNOWN;
peer = homa_peer_find(&hsk->homa->peers, &saddr, &hsk->inet);
if (!IS_ERR(peer))
__homa_xmit_control(&unknown, sizeof(unknown), peer, hsk);
}
/**
* homa_xmit_data() - If an RPC has outbound data packets that are permitted
* to be transmitted according to the scheduling mechanism, arrange for
* them to be sent (some may be sent immediately; others may be sent
* later by the pacer thread).
* @rpc: RPC to check for transmittable packets. Must be locked by
* caller.
* @force: True means send at least one packet, even if the NIC queue
* is too long. False means that zero packets may be sent, if
* the NIC queue is sufficiently long.
*/
void homa_xmit_data(struct homa_rpc *rpc, bool force)
{
while (rpc->msgout.next_packet) {
int priority;
struct sk_buff *skb = rpc->msgout.next_packet;
struct homa *homa = rpc->hsk->homa;
int offset = homa_data_offset(skb);
if (homa == NULL) {
printk(KERN_ERR "NULL homa pointer in homa_xmit_"
"data, state %d, shutdown %d, id %llu, socket %d",
rpc->state, rpc->hsk->shutdown, rpc->id,
rpc->hsk->port);
BUG();
}
if (offset >= rpc->msgout.granted) {
tt_record3("homa_xmit_data stopping at offset %d "
"for id %u: granted is %d",
offset, rpc->id, rpc->msgout.granted);
break;
}
if ((rpc->msgout.length - offset) >= homa->throttle_min_bytes) {
if (!homa_check_nic_queue(homa, skb, force)) {
tt_record1("homa_xmit_data adding id %u to "
"throttle queue", rpc->id);
homa_add_to_throttled(rpc);
break;
}
}
if (offset < rpc->msgout.unscheduled) {
priority = homa_unsched_priority(homa, rpc->peer,
rpc->msgout.length);
} else {
priority = rpc->msgout.sched_priority;
}
rpc->msgout.next_packet = *homa_next_skb(skb);
skb_get(skb);
__homa_xmit_data(skb, rpc, priority);
force = false;
}
tt_record("homa_xmit_data returning");
}
/**
* __homa_xmit_data() - Handles packet transmission stuff that is common
* to homa_xmit_data and homa_resend_data.
* @skb: Packet to be sent. The packet will be freed after transmission
* (and also if errors prevented transmission).
* @rpc: Information about the RPC that the packet belongs to.
* @priority: Priority level at which to transmit the packet.
*/
void __homa_xmit_data(struct sk_buff *skb, struct homa_rpc *rpc, int priority)
{
int err;
struct data_header *h = (struct data_header *)
skb_transport_header(skb);
struct dst_entry *dst;
/* Update info that may have changed since the message was initially
* created.
*/
h->cutoff_version = rpc->peer->cutoff_version;
dst = homa_get_dst(rpc->peer, rpc->hsk);
dst_hold(dst);
skb_dst_set(skb, dst);
skb->ooo_okay = 1;
skb->ip_summed = CHECKSUM_PARTIAL;
skb->csum_start = skb_transport_header(skb) - skb->head;
skb->csum_offset = offsetof(struct common_header, checksum);
if (rpc->hsk->inet.sk.sk_family == AF_INET6) {
tt_record4("calling ip6_xmit: skb->len %d, peer 0x%x, id %d, "
"offset %d",
skb->len, tt_addr(rpc->peer->addr), rpc->id,
ntohl(h->seg.offset));
err = ip6_xmit(&rpc->hsk->inet.sk, skb, &rpc->peer->flow.u.ip6,
0, NULL,
rpc->hsk->homa->priority_map[priority] << 4, 0);
} else {
tt_record4("calling ip_queue_xmit: skb->len %d, peer 0x%x, "
"id %d, offset %d",
skb->len, tt_addr(rpc->peer->addr), rpc->id,
htonl(h->seg.offset));
rpc->hsk->inet.tos = rpc->hsk->homa->priority_map[priority]<<5;
err = ip_queue_xmit(&rpc->hsk->inet.sk, skb, &rpc->peer->flow);
}
tt_record4("Finished queueing packet: rpc id %llu, offset %d, len %d, "
"granted %d",
rpc->id, ntohl(h->seg.offset), skb->len,
rpc->msgout.granted);
if (err) {
INC_METRIC(data_xmit_errors, 1);
}
INC_METRIC(packets_sent[0], 1);
INC_METRIC(priority_bytes[priority], skb->len);
INC_METRIC(priority_packets[priority], 1);
}
/**
* homa_resend_data() - This function is invoked as part of handling RESEND
* requests. It retransmits the packets containing a given range of bytes
* from a message.
* @rpc: RPC for which data should be resent.
* @start: Offset within @rpc->msgout of the first byte to retransmit.
* @end: Offset within @rpc->msgout of the byte just after the last one
* to retransmit.
* @priority: Priority level to use for the retransmitted data packets.
*/
void homa_resend_data(struct homa_rpc *rpc, int start, int end,
int priority)
{
struct sk_buff *skb;
if (end <= start)
return;
/* The nested loop below scans each data_segment in each
* packet, looking for those that overlap the range of
* interest.
*/
for (skb = rpc->msgout.packets; skb != NULL; skb = *homa_next_skb(skb)) {
int seg_offset = (skb_transport_header(skb) - skb->head)
+ sizeof32(struct data_header)
- sizeof32(struct data_segment);
int offset, length, count;
struct data_segment *seg;
struct data_header *h;
count = skb_shinfo(skb)->gso_segs;
if (count < 1)
count = 1;
for ( ; count > 0; count--,
seg_offset += sizeof32(*seg) + length) {
struct sk_buff *new_skb;
seg = (struct data_segment *) (skb->head + seg_offset);
offset = ntohl(seg->offset);
length = ntohl(seg->segment_length);
if (end <= offset)
return;
if ((offset + length) <= start)
continue;
/* This segment must be retransmitted. Copy it into
* a clean sk_buff.
*/
new_skb = alloc_skb(length + sizeof(struct data_header)
+ rpc->hsk->ip_header_length
+ HOMA_SKB_EXTRA, GFP_KERNEL);
if (unlikely(!new_skb)) {
if (rpc->hsk->homa->verbose)
printk(KERN_NOTICE "homa_resend_data "
"couldn't allocate skb\n");
continue;
}
skb_reserve(new_skb, rpc->hsk->ip_header_length
+ HOMA_SKB_EXTRA);
skb_reset_transport_header(new_skb);
__skb_put_data(new_skb, skb_transport_header(skb),
sizeof32(struct data_header)
- sizeof32(struct data_segment));
__skb_put_data(new_skb, seg, sizeof32(*seg) + length);
h = ((struct data_header *) skb_transport_header(new_skb));
h->retransmit = 1;
if ((offset + length) <= rpc->msgout.granted)
h->incoming = htonl(rpc->msgout.granted);
else if ((offset + length) > rpc->msgout.length)
h->incoming = htonl(rpc->msgout.length);
else
h->incoming = htonl(offset + length);
tt_record3("retransmitting offset %d, length %d, id %d",
offset, length, rpc->id);
homa_check_nic_queue(rpc->hsk->homa, new_skb, true);
__homa_xmit_data(new_skb, rpc, priority);
INC_METRIC(resent_packets, 1);
}
}
}
/**
* homa_outgoing_sysctl_changed() - Invoked whenever a sysctl value is changed;
* any output-related parameters that depend on sysctl-settable values.
* @homa: Overall data about the Homa protocol implementation.
*/
void homa_outgoing_sysctl_changed(struct homa *homa)
{
__u64 tmp;
/* Code below is written carefully to avoid integer underflow or
* overflow under expected usage patterns. Be careful when changing!
*/
homa->cycles_per_kbyte = (8*(__u64) cpu_khz)/homa->link_mbps;
homa->cycles_per_kbyte = (101*homa->cycles_per_kbyte)/100;
tmp = homa->max_nic_queue_ns;
tmp = (tmp*cpu_khz)/1000000;
homa->max_nic_queue_cycles = tmp;
}
/**
* homa_check_nic_queue() - This function is invoked before passing a packet
* to the NIC for transmission. It serves two purposes. First, it maintains
* an estimate of the NIC queue length. Second, it indicates to the caller
* whether the NIC queue is so full that no new packets should be queued
* (Homa's SRPT depends on keeping the NIC queue short).
* @homa: Overall data about the Homa protocol implementation.
* @skb: Packet that is about to be transmitted.
* @force: True means this packet is going to be transmitted
* regardless of the queue length.
* Return: Nonzero is returned if either the NIC queue length is
* acceptably short or @force was specified. 0 means that the
* NIC queue is at capacity or beyond, so the caller should delay
* the transmission of @skb. If nonzero is returned, then the
* queue estimate is updated to reflect the transmission of @skb.
*/
int homa_check_nic_queue(struct homa *homa, struct sk_buff *skb, bool force)
{
__u64 idle, new_idle, clock;
int cycles_for_packet, segs, bytes;
segs = skb_shinfo(skb)->gso_segs;
bytes = skb->tail - skb->transport_header;
bytes += HOMA_IPV6_HEADER_LENGTH + HOMA_ETH_OVERHEAD;
if (segs > 0)
bytes += (segs - 1) * (sizeof32(struct data_header)
- sizeof32(struct data_segment)
+ HOMA_IPV6_HEADER_LENGTH + HOMA_ETH_OVERHEAD);
cycles_for_packet = (bytes*homa->cycles_per_kbyte)/1000;
while (1) {
clock = get_cycles();
idle = atomic64_read(&homa->link_idle_time);
if (((clock + homa->max_nic_queue_cycles) < idle) && !force
&& !(homa->flags & HOMA_FLAG_DONT_THROTTLE))
return 0;
if (!list_empty(&homa->throttled_rpcs))
INC_METRIC(pacer_bytes, bytes);
if (idle < clock) {
if (!list_empty(&homa->throttled_rpcs)) {
INC_METRIC(pacer_lost_cycles, clock - idle);
tt_record1("pacer lost %d cycles",
clock - idle);
}
new_idle = clock + cycles_for_packet;
} else
new_idle = idle + cycles_for_packet;
/* This method must be thread-safe. */
if (atomic64_cmpxchg_relaxed(&homa->link_idle_time, idle,
new_idle) == idle)
break;
}
return 1;
}
/**
* homa_pacer_main() - Top-level function for the pacer thread.
* @transportInfo: Pointer to struct homa.
*
* Return: Always 0.
*/
int homa_pacer_main(void *transportInfo)
{
cycles_t start;
struct homa *homa = (struct homa *) transportInfo;
while (1) {
if (homa->pacer_exit) {
break;
}
start = get_cycles();
homa_pacer_xmit(homa);
/* Sleep this thread if the throttled list is empty. Even
* if the throttled list isn't empty, call the scheduler
* to give other processes a chance to run (if we don't,
* softirq handlers can get locked out, which prevents
* incoming packets from being handled).
*/
set_current_state(TASK_INTERRUPTIBLE);
if (list_first_or_null_rcu(&homa->throttled_rpcs,
struct homa_rpc, throttled_links) == NULL)
tt_record("pacer sleeping");
else
__set_current_state(TASK_RUNNING);
INC_METRIC(pacer_cycles, get_cycles() - start);
schedule();
__set_current_state(TASK_RUNNING);
}
kthread_complete_and_exit(&homa_pacer_kthread_done, 0);
return 0;
}
/**
* homa_pacer_xmit() - Transmit packets from the throttled list. Note:
* this function may be invoked from either process context or softirq (BH)
* level. This function is invoked from multiple places, not just in the
* pacer thread. The reason for this is that (as of 10/2019) Linux's scheduling
* of the pacer thread is unpredictable: the thread may block for long periods
* of time (e.g., because it is assigned to the same CPU as a busy interrupt
* handler). This can result in poor utilization of the network link. So,
* this method gets invoked from other places as well, to increase the
* likelihood that we keep the link busy. Those other invocations are not
* guaranteed to happen, so the pacer thread provides a backstop.
* @homa: Overall data about the Homa protocol implementation.
*/
void homa_pacer_xmit(struct homa *homa)
{
struct homa_rpc *rpc;
int i;
/* Make sure only one instance of this function executes at a
* time.
*/
if (!spin_trylock_bh(&homa->pacer_mutex))
return;
/* Each iteration through the following loop sends one packet. We
* limit the number of passes through this loop in order to cap the
* time spent in one call to this function (see note in
* homa_pacer_main about interfering with softirq handlers).
*/
for (i = 0; i < 5; i++) {
__u64 idle_time, now;
int offset;
/* If the NIC queue is too long, wait until it gets shorter. */
now = get_cycles();
idle_time = atomic64_read(&homa->link_idle_time);
while ((now + homa->max_nic_queue_cycles) < idle_time) {
/* If we've xmitted at least one packet then
* return (this helps with testing and also
* allows homa_pacer_main to yield the core).
*/
if (i != 0)
goto done;
now = get_cycles();
}
/* Note: when we get here, it's possible that the NIC queue is
* still too long because other threads have queued packets,
* but we transmit anyway so we don't starve (see perf.text
* for more info).
*/
/* Lock the first throttled RPC. This may not be possible
* because we have to hold throttle_lock while locking
* the RPC; that means we can't wait for the RPC lock because
* of lock ordering constraints (see sync.txt). Thus, if
* the RPC lock isn't available, do nothing. Holding the
* throttle lock while locking the RPC is important because
* it keeps the RPC from being deleted before it can be locked.
*/
homa_throttle_lock(homa);
homa->pacer_fifo_count -= homa->pacer_fifo_fraction;
if (homa->pacer_fifo_count <= 0) {
__u64 oldest = ~0;
struct homa_rpc *cur;
homa->pacer_fifo_count += 1000;
rpc = NULL;
list_for_each_entry_rcu(cur, &homa->throttled_rpcs,
throttled_links) {
if (cur->msgout.init_cycles < oldest) {
rpc = cur;
oldest = cur->msgout.init_cycles;
}
}
} else
rpc = list_first_or_null_rcu(&homa->throttled_rpcs,
struct homa_rpc, throttled_links);
if (rpc == NULL) {
homa_throttle_unlock(homa);
break;
}
if (!(spin_trylock_bh(rpc->lock))) {
homa_throttle_unlock(homa);
INC_METRIC(pacer_skipped_rpcs, 1);
break;
}
homa_throttle_unlock(homa);
offset = homa_rpc_send_offset(rpc);
tt_record4("pacer calling homa_xmit_data for rpc id %llu, "
"port %d, offset %d, bytes_left %d",
rpc->id, rpc->hsk->port, offset,
rpc->msgout.length - offset);
homa_xmit_data(rpc, true);
if (!rpc->msgout.next_packet
|| (homa_data_offset(rpc->msgout.next_packet)
>= rpc->msgout.granted)) {
/* Nothing more to transmit from this message (right now),
* so remove it from the throttled list.
*/
homa_throttle_lock(homa);
if (!list_empty(&rpc->throttled_links)) {
tt_record2("pacer removing id %d from "
"throttled list, offset %d",
rpc->id, offset);
list_del_rcu(&rpc->throttled_links);
if (list_empty(&homa->throttled_rpcs))
INC_METRIC(throttled_cycles, get_cycles()
- homa->throttle_add);
/* Note: this reinitialization is only safe
* because the pacer only looks at the first
* element of the list, rather than traversing
* it (and besides, we know the pacer isn't
* active concurrently, since this code *is*
* the pacer). It would not be safe under more
* general usage patterns.
*/
INIT_LIST_HEAD_RCU(&rpc->throttled_links);
}
homa_throttle_unlock(homa);
}
homa_rpc_unlock(rpc);
}
done:
spin_unlock_bh(&homa->pacer_mutex);
}
/**
* homa_pacer_stop() - Will cause the pacer thread to exit (waking it up
* if necessary); doesn't return until after the pacer thread has exited.
* @homa: Overall data about the Homa protocol implementation.
*/
void homa_pacer_stop(struct homa *homa)
{
homa->pacer_exit = true;
wake_up_process(homa->pacer_kthread);
kthread_stop(homa->pacer_kthread);
homa->pacer_kthread = NULL;
}
/**
* homa_add_to_throttled() - Make sure that an RPC is on the throttled list
* and wake up the pacer thread if necessary.
* @rpc: RPC with outbound packets that have been granted but can't be
* sent because of NIC queue restrictions.
*/
void homa_add_to_throttled(struct homa_rpc *rpc)
{
struct homa *homa = rpc->hsk->homa;
struct homa_rpc *candidate;
int bytes_left;
int checks = 0;
__u64 now;
if (!list_empty(&rpc->throttled_links)) {
return;
}
now = get_cycles();
if (!list_empty(&homa->throttled_rpcs))
INC_METRIC(throttled_cycles, now - homa->throttle_add);
homa->throttle_add = now;
bytes_left = rpc->msgout.length - homa_data_offset(
rpc->msgout.next_packet);
homa_throttle_lock(homa);
list_for_each_entry_rcu(candidate, &homa->throttled_rpcs,
throttled_links) {
int bytes_left_cand;
checks++;
/* Watch out: the pacer might have just transmitted the last
* packet from candidate.
*/
bytes_left_cand = candidate->msgout.length -
homa_rpc_send_offset(candidate);
if (bytes_left_cand > bytes_left) {
list_add_tail_rcu(&rpc->throttled_links,
&candidate->throttled_links);
goto done;
}
}
list_add_tail_rcu(&rpc->throttled_links, &homa->throttled_rpcs);
done:
homa_throttle_unlock(homa);
wake_up_process(homa->pacer_kthread);
INC_METRIC(throttle_list_adds, 1);
INC_METRIC(throttle_list_checks, checks);
// tt_record("woke up pacer thread");
}
/**
* homa_remove_from_throttled() - Make sure that an RPC is not on the
* throttled list.
* @rpc: RPC of interest.
*/
void homa_remove_from_throttled(struct homa_rpc *rpc)
{
if (unlikely(!list_empty(&rpc->throttled_links))) {
UNIT_LOG("; ", "removing id %llu from throttled list", rpc->id);
homa_throttle_lock(rpc->hsk->homa);
list_del(&rpc->throttled_links);
if (list_empty(&rpc->hsk->homa->throttled_rpcs))
INC_METRIC(throttled_cycles, get_cycles()
- rpc->hsk->homa->throttle_add);
homa_throttle_unlock(rpc->hsk->homa);
INIT_LIST_HEAD(&rpc->throttled_links);
}
}
/**
* homa_log_throttled() - Print information to the system log about the
* RPCs on the throttled list.
* @homa: Overall information about the Homa transport.
*/
void homa_log_throttled(struct homa *homa)
{
struct homa_rpc *rpc;
int rpcs = 0;
int64_t bytes = 0;
printk(KERN_NOTICE "Printing throttled list\n");
homa_throttle_lock(homa);
list_for_each_entry_rcu(rpc, &homa->throttled_rpcs, throttled_links) {
rpcs++;
if (!(spin_trylock_bh(rpc->lock))) {
printk(KERN_NOTICE "Skipping throttled RPC: locked\n");
continue;
}
if (rpc->msgout.next_packet != NULL)
bytes += rpc->msgout.length - homa_rpc_send_offset(rpc);
if (rpcs <= 20)
homa_rpc_log(rpc);
homa_rpc_unlock(rpc);
}
homa_throttle_unlock(homa);
printk(KERN_NOTICE "Finished printing throttle list: %d rpcs, "
"%lld bytes\n", rpcs, bytes);
}