-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataset.py
326 lines (254 loc) · 16.1 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
from __future__ import annotations
import os, json
import torch
import numpy as np
import pandas as pd
import lightning.pytorch as pl
from transformers import GPT2Tokenizer, AutoTokenizer
from torch.utils.data import Dataset, DataLoader, random_split
from typing import Optional
from tqdm import tqdm
ROWS = ["browInnerUpLeft", "browInnerUpRight", "browDownLeft", "browDownRight", "browOuterUpLeft", "browOuterUpRight", "eyeLookUpLeft", "eyeLookUpRight", "eyeLookDownLeft", "eyeLookDownRight", "eyeLookInLeft", "eyeLookInRight", "eyeLookOutLeft", "eyeLookOutRight", "eyeBlinkLeft", "eyeBlinkRight", "eyeSquintLeft", "eyeSquintRight", "eyeWideLeft", "eyeWideRight", "cheekPuffLeft", "cheekPuffRight", "cheekSquintLeft", "cheekSquintRight", "noseSneerLeft", "noseSneerRight", "mouthLeft", "mouthRight", "mouthShrugUpper", "mouthShrugLower", "mouthClose", "mouthSmileLeft", "mouthSmileRight", "mouthFrownLeft", "mouthFrownRight", "mouthDimpleLeft", "mouthDimpleRight", "mouthUpperUpLeft", "mouthUpperUpRight", "mouthLowerDownLeft", "mouthLowerDownRight", "headRotationX", "headRotationY", "headRotationZ", "headRotationW", "eyeLeftRotationX", "eyeLeftRotationY", "eyeLeftRotationZ", "eyeLeftRotationW", "eyeRightRotationX", "eyeRightRotationY", "eyeRightRotationZ", "eyeRightRotationW"]
MEAN = np.array([35.42625,34.68209,11.193328,9.448617,5.489865,5.624059,6.7351117,6.7146173,6.4259295,6.1182766,12.934639,10.825693,7.103837,14.446621,5.6448183,5.6448183,0.2584528,0.20567615,9.493767,9.634814,2.9200249,2.5363758,4.7611876,4.4578295,2.892463,3.9334168,-1.52528,-0.5883671,1.1649386,1.1649386,0.17263222,3.817821,3.1721816,3.5688465,3.596487,1.9089105,1.5860908,0.62049735,0.933096,-0.51708114,-0.77758,0.019366555,0.024757005,0.017393207,0.998417,0.6897093,-0.018975902,-0.04379949,-0.71493405,0.6897093,-0.018975902,-0.04379949,-0.71493405], dtype=np.float32)
VAR = np.array([52.45966,52.824757,22.530165,20.881401,13.870541,13.955491,14.511868,14.481247,15.98498,15.717793,24.745518,18.958235,14.621764,21.894785,18.127039,18.127039,8.58098,8.331993,21.394463,22.009218,9.6450815,8.8275,11.704032,10.513238,6.506281,9.2519655,3.0471015,1.1358262,2.6952958,2.6952958,0.3419568,8.694366,8.3888235,12.9827,9.892623,4.347183,4.1944118,1.700042,2.4352992,1.4167017,2.029416,0.033240832,0.023862833,0.013948744,0.0020883488,0.03044789,0.06612098,0.06706293,0.03310573,0.03044789,0.06612098,0.06706293,0.03310573], dtype=np.float32)
MIN = np.array([-43.04679,-43.42719,-29.22112,-40.90203,-15.06938,-15.1839,-0.6328122,-0.6262041,-30.08919,-29.76008,-5.946578,-3.707915,-0.2945891,-1.122671,-24.77933,-24.77933,-17.08037,-17.07599,-2.884468,-1.791656,-0.2679306,-0.6307207,-0.2617344,-0.1632695,-0.7676599,-0.9987831,-26.60651,-9.093588,-0.007197175,-0.007197175,-0.01289603,-0.1235052,-0.06439058,-19.71915,-20.08939,-0.06175258,-0.03219529,-0.2366741,-0.2996348,-22.10656,-24.38647,-0.11895,-0.04517,-0.05895,0.97909,0.57269,-0.30394,-0.30607,-0.80929,0.57269,-0.30394,-0.30607,-0.80929], dtype=np.float32)
MAX = np.array([202.0469,201.0377,132.4973,123.7119,70.36002,70.26895,98.53432,98.54633,98.83868,90.65083,99.50579,101.6544,89.5331,89.00202,102.8879,102.8879,68.81055,69.37666,98.33184,97.93076,89.15349,88.97007,89.94244,89.49109,106.6434,122.8172,0.03756836,0.04295971,19.60811,19.60811,2.811168,59.15743,60.26817,100.5541,77.59547,29.57872,30.13408,26.52787,29.26376,0.1972284,0.2496958,0.14746,0.19793,0.09723,0.99999,0.80094,0.1954,0.14343,-0.57217,0.80094,0.1954,0.14343,-0.57217], dtype=np.float32)
MAX_LENGTH = 0
MIN_LENGTH = 100000
MIN_META = 1000000
MAX_META = 0
def pad_sequence(sequence: torch.Tensor | np.ndarray, length: int, value=0.0) -> np.ndarray | torch.Tensor:
seq_length = len(sequence)
if len(sequence) == length:
return sequence
if len(sequence) > length:
print(f"Length is {len(sequence)} but should be max {length}")
assert False, "We don't have that here!"
if truncating == PadSide.Left:
return sequence[seq_length-length:]
return sequence[:length]
zeros = np.zeros((length-seq_length,) + sequence.shape[1:], dtype=sequence.dtype) + np.array([value], dtype=sequence.dtype)
return np.concatenate([sequence, zeros], axis=0)
def fetch_metadata(directory: str) -> list[str]:
return [os.path.join(directory, path) for path in os.listdir(directory) if path.lower().endswith(".json")] # [:10]
def parse_metadata(files: list[str]) -> list[dict[str, str]]:
return [json.load(open(file, "r")) for file in files]
def parse_filenames_from_metadata(meta: list[dict[str, str]]) -> list[str]:
return [data['sequence'] for data in meta]
def load_csv(directory, filename, FAKE_DATA:bool=False) -> pd.DataFrame:
data = pd.read_csv(os.path.join(directory, filename), sep=",", header=0, index_col=False)[ROWS]
return data
def load(directory: str, filename: str, metadata: dict[str, str], tokenizer: GPT2Tokenizer, mapping, return_bytes: bool) -> Set:
if os.path.exists(os.path.join(directory, "NPY")):
data = np.load(os.path.join(directory, "NPY", f"{filename}.npz"))
pre, perform, post = data['pre'], data['perform'], data['post']
else:
pre, perform, post = load_csv(os.path.join(directory, "TXT"), f"{filename}_1.txt"), \
load_csv(os.path.join(directory, "TXT"), f"{filename}_2.txt"), \
load_csv(os.path.join(directory, "TXT"), f"{filename}_3.txt")
pre, perform, post = pre.to_numpy(np.float32), perform.to_numpy(np.float32), post.to_numpy(np.float32)
set = Set(pre, perform, post, metadata, tokenizer, mapping, return_bytes)
set.normalize("minmax")
set.merge()
sets = set.finalize()
return sets
def system_prompt():
return f"""You are a helpful metadata generator that generates data for visual and non visual uncertainty cues for virtual agents given a confidence value.
Here, an uncertainty value of 0 means that the virtual agent is really uncertain in its answer and does not know the answer.
A value of 100 means that the agent is really certain and does know the answer."""
def confidence_prompt(confidence):
return f"Please generate metadata for the following confidence: {int(confidence)}."
class Set:
PAD_VALUE: int = -1
INTONATIONS: list[str] = ["rising", "falling"]
FILLERS: list[str] = ["none", "um", "uh", "I think", "maybe", "but I am not sure", "I don't know"]
MAX_LENGTH = 1800
RETURN_FULL = False
INTONATIONS: list[str] = ["rising", "falling"]
FILLERS: list[str] = ["none", "um", "uh"]
PRE_HEDGE: list[str] = ["none", "ithink", "maybe"]
POST_HEDGE: list[str] = ["none", "butimnotsure", "idontknow"]
def __init__(self, pre: np.ndarray, perform: np.ndarray, post: np.ndarray, meta: dict[str, str], tokenizer: AutoTokenizer, mapping: lambda x: x, return_bytes: bool = False) -> None:
self._pre = pre
self._perform = perform
self._post = post
self.mapping = mapping
self.annotator = meta["annotator"]
self.tokenizer = tokenizer
self.return_bytes = return_bytes
# TODO think about if return_bytes influences the length
if pre is not None:
self.lengths = [pre.shape[0], perform.shape[0], post.shape[0]]
self.full_length = self.lengths[0] + self.lengths[1] + self.lengths[2]
assert self.full_length < self.MAX_LENGTH
global MAX_LENGTH
global MIN_LENGTH
MAX_LENGTH = max(MAX_LENGTH, self.full_length)
MIN_LENGTH = min(MIN_LENGTH, self.full_length)
self._pre_mask = np.ones((pre.shape[0],), dtype=np.float32)
self._perform_mask = np.ones((perform.shape[0],), dtype=np.float32)
self._post_mask = np.ones((post.shape[0],), dtype=np.float32)
self._data = None
self._meta = meta
self.intonation = self._meta['intonation']
self.filler = self._meta['fillerWord']
self.pre_hedge = self._meta['preHedge']
self.post_hedge = self._meta['postHedge']
self.pre_pause = self._meta['prePause']
self.post_pause = self._meta['postPause']
# if 'confidence' in self._meta:
# global MIN_META
# global MAX_META
# MIN_META = min(MIN_META, self._meta['confidence'])
# MAX_META = max(MAX_META, self._meta['confidence'])
def normalize(self, method="std") -> None:
match method:
case "std": # Normalize to mean = 0 and var = 1
self._pre = (self._pre - MEAN) / VAR
self._perform = (self._perform - MEAN) / VAR
self._post = (self._post - MEAN) / VAR
case "minmax": # Normalize to 0-1
self._pre = (self._pre - MIN) / (MAX - MIN)
self._perform = (self._perform - MIN) / (MAX - MIN)
self._post = (self._post - MIN) / (MAX - MIN)
case _:
assert False, "Unkown normlization method"
def merge(self) -> None:
self._data = np.concatenate([self._pre, self._perform, self._post], axis=0)
self._pre_mask, self._perform_mask, self._post_mask = None, None, None
self._pre, self._perform, self._post = None, None, None
def finalize(self) -> list[Set]:
if self.return_bytes:
tokens = self.tokenizer(self.prompt(), truncation=False, padding='do_not_pad')
output = []
FRAMES = 6
MAX_LENGTH = self._data.shape[-1] * 4 * FRAMES + 200 # ~ 6 frames which is the maximum we can support with our hardware
for i in range(0, len(self._data), FRAMES):
data = self._data[i:i+FRAMES]
data = np.ascontiguousarray(data, data.dtype)
sequence = data.view(np.uint8).reshape(-1,)
data = np.concatenate([tokens["input_ids"], sequence])
data_mask = np.ones((data.shape[0],), dtype=np.float32)
data = pad_sequence(data, MAX_LENGTH, value=0)
data_mask = pad_sequence(data_mask, MAX_LENGTH, value=0)
set = Set(self._pre, self._perform, self._post, self._meta, self.tokenizer, self.mapping, self.return_bytes)
set._data = data
set._data_mask = data_mask
set.lengths = self.lengths
output.append(set)
return output
else:
self._data_mask = np.ones((self._data.shape[0],), dtype=np.float32)
self._data_mask = pad_sequence(self._data_mask, self.MAX_LENGTH, value=0)
self._data = pad_sequence(self._data, self.MAX_LENGTH, value=self.PAD_VALUE)
return [self]
# Check for invalid data
assert not np.any(np.isnan(self._data_mask))
assert not np.any(np.isnan(self._data))
@property
def confidence(self) -> np.float32:
return self._meta['confidence']
@staticmethod
def prompt_from_metadata(confidence, intonation, filler, pre_hedge, post_hedge, pre_length, perform_length, post_length):
prompt = f"""
<|system|>
{system_prompt()}</s>
<|user|>
{confidence_prompt(confidence)}</s>
<|assistant|>
{{
"intonation": "{intonation}",
"filler": "{filler}",
"pre_hedge": "{pre_hedge}",
"post_hedge": "{post_hedge}",
"pre_length": {pre_length},
"perform_length": {perform_length},
"post_length": {post_length}
}}</s>
"""
return prompt
def prompt(self) -> str:
return self.prompt_from_metadata(self.confidence, self.intonation, self.filler, self.pre_hedge, self.post_hedge, self.lengths[0], self.lengths[1], self.lengths[2])
@staticmethod
def one_hot_data(confidence, intonation, filler, pre_hedge, post_hedge):
confidence = np.zeros((1,))
confidence[:] = confidence
intonations = np.zeros((len(Set.INTONATIONS),))
intonations[Set.INTONATIONS.index(intonation)] = 1
fillers = np.zeros((len(Set.FILLERS),))
fillers[Set.FILLERS.index(filler)] = 1
pre_hedges = np.zeros((len(Set.PRE_HEDGE),))
pre_hedges[Set.PRE_HEDGE.index(pre_hedge)] = 1
post_hedges = np.zeros((len(Set.POST_HEDGE),))
post_hedges[Set.POST_HEDGE.index(post_hedge)] = 1
return np.concatenate([confidence, intonations, fillers, pre_hedges, post_hedges], axis=0).astype(np.float32)
@property
def data(self):
tokens = self.tokenizer(self.prompt(), truncation=False, max_length=512, padding='max_length')
return {
'encoding': self.one_hot_data(self.confidence, self.intonation, self.filler, self.pre_hedge, self.post_hedge),
'log_pre_length': np.log(self.pre_pause).astype(np.float32),
'log_post_length': np.log(self.post_pause).astype(np.float32),
'data_input': self._data,
'data_masks': self._data_mask,
'meta_input_ids': torch.tensor(tokens['input_ids']),
'meta_attn_masks': torch.tensor(tokens['attention_mask']),
}
class CustomDataset(Dataset):
def __init__(self, directory: str, metadata: list[dict[str, str]], filenames: list[str], tokenizer: GPT2Tokenizer, mapping, return_bytes):
self.sets = [load(directory, filename, meta, tokenizer, mapping, return_bytes) for filename, meta in zip(tqdm(filenames), metadata,)]
self.sets = [set for superset in self.sets for set in superset]
def __getitem__(self, index):
data = self.sets[index].data
data["index"] = index
return data
def __len__(self) -> int:
return len(self.sets)
class BaselineDataset(Dataset):
def __init__(self, directory: str, metadata: list[dict[str, str]], filenames: list[str], tokenizer: GPT2Tokenizer, mapping):
self.sets = [load(directory, filename, meta, tokenizer, mapping) for filename, meta in zip(tqdm(filenames), metadata)]
def __getitem__(self, index):
data = self.sets[index].data
data["index"] = index
return data
def __len__(self) -> int:
return len(self.sets)
class BlendShapeDataset(pl.LightningDataModule):
CPU_COUNT = min(multiprocessing.cpu_count(), 4) if os.name != "nt" else 0
def __init__(self, directory: str, subdir: str, length: int, batch_size: int, synthetic:bool, tokenizer: str, return_bytes: bool = False):
"""
return_bytes: If set to true the dataset will return byte tokens for the baseline
"""
super().__init__()
self.return_bytes = return_bytes
self.mapping = lambda x: x
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer, token="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") #, bos_token='<|startoftext|>', eos_token='<|endoftext|>', pad_token='<|pad|>')
self.tokenizer.add_special_tokens({'pad_token': self.tokenizer.eos_token})
# self.tokenizer.pad_token = self.tokenizer.eos_token
self.synthetic = synthetic
self.prepare_data_per_node = False # Otherwise we get in trouble because we don't have the data ready for other nodes
self.directory = directory
self.batch_size = batch_size
self.length = length
# def prepare_data(self) -> None:
jsons = fetch_metadata(os.path.join(self.directory, subdir))
self.meta = parse_metadata(jsons)
self.files = parse_filenames_from_metadata(self.meta)
def setup(self, stage: Optional[str] = None):
if stage == "fit" or stage is None:
self.full = CustomDataset(
directory=self.directory,
metadata=self.meta,
filenames=self.files,
tokenizer=self.tokenizer,
mapping=self.mapping,
return_bytes=self.return_bytes
)
# Important, we do not
self.train, self.validate = random_split(self.full, [0.9, 0.1], generator=torch.Generator().manual_seed(42))
def train_dataloader(self):
return DataLoader(self.train, batch_size=self.batch_size, num_workers=BlendShapeDataset.CPU_COUNT, shuffle=True)
def val_dataloader(self):
return DataLoader(self.validate, batch_size=self.batch_size, num_workers=BlendShapeDataset.CPU_COUNT)
def test_dataloader(self):
return DataLoader(self.test, batch_size=self.batch_size, num_workers=BlendShapeDataset.CPU_COUNT)