-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGenVanillaNN.py
234 lines (179 loc) · 7.46 KB
/
GenVanillaNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import numpy as np
import cv2
import os
import pickle
import sys
import math
from PIL import Image
import matplotlib.pyplot as plt
from torchvision.io import read_image
import torch.nn as nn
import torch.nn.functional as F
import torch
from torch.utils.data import Dataset
from torchvision import transforms
#from tensorboardX import SummaryWriter
from VideoSkeleton import VideoSkeleton
from VideoReader import VideoReader
from Skeleton import Skeleton
torch.set_default_dtype(torch.float32)
class SkeToImageTransform:
def __init__(self, image_size):
self.imsize = image_size
def __call__(self, ske):
#image = Image.new('RGB', (self.imsize, self.imsize), (255, 255, 255))
image = white_image = np.ones((self.imsize, self.imsize, 3), dtype=np.uint8) * 255
ske.draw(image)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# cv2.imshow('Image', image)
# key = cv2.waitKey(-1)
return image
class VideoSkeletonDataset(Dataset):
def __init__(self, videoSke, ske_reduced, source_transform=None, target_transform=None):
""" videoSkeleton dataset:
videoske(VideoSkeleton): video skeleton that associate a video and a skeleton for each frame
ske_reduced(bool): use reduced skeleton (13 joints x 2 dim=26) or not (33 joints x 3 dim = 99)
"""
self.videoSke = videoSke
self.source_transform = source_transform
self.target_transform = target_transform
self.ske_reduced = ske_reduced
print("VideoSkeletonDataset: ",
"ske_reduced=", ske_reduced, "=(", Skeleton.reduced_dim, " or ",Skeleton.full_dim,")" )
def __len__(self):
return self.videoSke.skeCount()
def __getitem__(self, idx):
# prepreocess skeleton (input)
reduced = True
ske = self.videoSke.ske[idx]
ske = self.preprocessSkeleton(ske)
# prepreocess image (output)
image = Image.open(self.videoSke.imagePath(idx))
if self.target_transform:
image = self.target_transform(image)
return ske, image
def preprocessSkeleton(self, ske):
if self.source_transform:
ske = self.source_transform(ske)
else:
ske = torch.from_numpy( ske.__array__(reduced=self.ske_reduced).flatten() )
ske = ske.to(torch.float32)
ske = ske.reshape( ske.shape[0],1,1)
return ske
def tensor2image(self, normalized_image):
numpy_image = normalized_image.detach().numpy()
# Réorganiser les dimensions (C, H, W) en (H, W, C)
numpy_image = np.transpose(numpy_image, (1, 2, 0))
# passage a des images cv2 pour affichage
numpy_image = cv2.cvtColor(np.array(numpy_image), cv2.COLOR_RGB2BGR)
denormalized_image = numpy_image * np.array([0.5, 0.5, 0.5]) + np.array([0.5, 0.5, 0.5])
denormalized_output = denormalized_image * 1
return denormalized_output
def init_weights(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
nn.init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find('BatchNorm') != -1:
nn.init.normal_(m.weight.data, 1.0, 0.02)
nn.init.constant_(m.bias.data, 0)
class GenNNSkeToImage(nn.Module):
""" class that Generate a new image from videoSke from a new skeleton posture
Fonc generator(Skeleton)->Image
"""
def __init__(self):
super(GenNNSkeToImage, self).__init__()
self.input_dim = Skeleton.reduced_dim
self.model = nn.Sequential(
# TP-TODO
)
print(self.model)
def forward(self, z):
img = self.model(z)
return img
class GenNNSkeImToImage(nn.Module):
""" class that Generate a new image from from THE IMAGE OF the new skeleton posture
Fonc generator(Skeleton)->Image
"""
def __init__(self):
super(GenNNSkeToImage, self).__init__()
self.input_dim = Skeleton.reduced_dim
self.model = nn.Sequential(
# TP-TODO
)
print(self.model)
def forward(self, z):
img = self.model(z)
return img
class GenVanillaNN():
""" class that Generate a new image from a new skeleton posture
Fonc generator(Skeleton)->Image
"""
def __init__(self, videoSke, loadFromFile=False, optSkeOrImage=1):
image_size = 64
if optSkeOrImage==1:
self.netG = GenNNSkeToImage()
src_transform = None
self.filename = 'data/Dance/DanceGenVanillaFromSke.pth'
else:
self.netG = GenNNSkeImToImage()
src_transform = transforms.Compose([ SkeToImageTransform(image_size),
transforms.ToTensor(),
#transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
self.filename = 'data/Dance/DanceGenVanillaFromSkeim.pth'
tgt_transform = transforms.Compose([
transforms.Resize(image_size),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
# [transforms.Resize((64, 64)),
# transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
self.dataset = VideoSkeletonDataset(videoSke, ske_reduced=True, target_transform=tgt_transform, source_transform=src_transform)
self.dataloader = torch.utils.data.DataLoader(dataset=self.dataset, batch_size=16, shuffle=True)
if loadFromFile and os.path.isfile(self.filename):
print("GenVanillaNN: Load=", self.filename)
print("GenVanillaNN: Current Working Directory: ", os.getcwd())
self.netG = torch.load(self.filename)
def train(self, n_epochs=20):
# TP-TODO
pass
def generate(self, ske):
""" generator of image from skeleton """
# TP-TODO
pass
# ske_t = self.dataset.preprocessSkeleton(ske)
# ske_t_batch = ske_t.unsqueeze(0) # make a batch
# normalized_output = self.netG(ske_t_batch)
# res = self.dataset.tensor2image(normalized_output[0]) # get image 0 from the batch
# return res
if __name__ == '__main__':
force = False
optSkeOrImage = 2 # use as input a skeleton (1) or an image with a skeleton drawed (2)
n_epoch = 2000 # 200
train = 1 #False
#train = True
if len(sys.argv) > 1:
filename = sys.argv[1]
if len(sys.argv) > 2:
force = sys.argv[2].lower() == "true"
else:
filename = "data/taichi1.mp4"
print("GenVanillaNN: Current Working Directory=", os.getcwd())
print("GenVanillaNN: Filename=", filename)
print("GenVanillaNN: Filename=", filename)
targetVideoSke = VideoSkeleton(filename)
if train:
# Train
gen = GenVanillaNN(targetVideoSke, loadFromFile=False)
gen.train(n_epoch)
else:
gen = GenVanillaNN(targetVideoSke, loadFromFile=True) # load from file
# Test with a second video
for i in range(targetVideoSke.skeCount()):
image = gen.generate( targetVideoSke.ske[i] )
#image = image*255
nouvelle_taille = (256, 256)
image = cv2.resize(image, nouvelle_taille)
cv2.imshow('Image', image)
key = cv2.waitKey(-1)