-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTrainerAutoencoder.py
121 lines (86 loc) · 4.38 KB
/
TrainerAutoencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
from pathlib import Path
import torch
from sklearn.preprocessing import OneHotEncoder
from torch import optim
from torch import nn
import ArgHandler
import DataLoader
from tqdm import tqdm
from Nets.Autoencoder.EncoderNet import EncoderNet
def train(**kwargs):
t = TrainerAutoencoder(**kwargs)
t.train()
class TrainerAutoencoder:
# Constant
NUM_CLASSES = 10
N_IMAGE_CHANNELS = 3
criterion = nn.MSELoss()
betas = (0.5, 0.999)
def __init__(self, **kwargs):
self._parse_args(**kwargs)
self._create_folder_structure()
def train(self):
train_loader, _ = DataLoader.load_cifar10(self.batch_size, use_pseudo_augmentation=self.data_augmentation)
# initialize One Hot encoder
one_hot_enc = OneHotEncoder()
all_classes = torch.tensor(range(self.NUM_CLASSES)).reshape(-1, 1)
one_hot_enc.fit(all_classes)
# Training Loop
for epoch in range(self.num_epochs):
for i, (real_images, labels) in enumerate(
tqdm(train_loader, desc=f'Epoch {epoch}/{self.num_epochs}', leave=False), 0):
############################
# Update Encoder and Generator(Decoder) network
############################
labels_one_hot = torch.tensor(one_hot_enc.transform(labels.reshape(-1, 1)).toarray(),
device=self.device)
self.generator.zero_grad()
self.encoder.zero_grad()
gpu_data = real_images.to(self.device)
generated_images = self.generator(self.encoder(gpu_data), labels_one_hot)
loss = self.criterion(generated_images, gpu_data)
loss.backward()
self.generator.optimizer.step()
self.encoder.optimizer.step()
if self.do_snapshots and self.snapshot_interval > 0 and epoch % self.snapshot_interval == 0:
path = f'{self.output_path}/snapshots/gan_after_epoch_{epoch}'
torch.save({
'netG_state_dict': self.generator.state_dict(),
'netE_state_dict': self.encoder.state_dict(),
}, path)
# Save model
path = f'{self.output_path}/gan_latest'
torch.save({
'netG_state_dict': self.generator.state_dict(),
'netE_state_dict': self.encoder.state_dict(),
}, path)
def _create_folder_structure(self):
Path(f'{self.output_path}/snapshots/').mkdir(parents=True, exist_ok=True)
def _parse_args(self, **kwargs):
# Handle Arguments
self.device = ArgHandler.handle_device(**kwargs)
self.learning_rate = ArgHandler.handle_learning_rate(**kwargs)
self.noise_size = ArgHandler.handle_noise_size(**kwargs)
self.generator = ArgHandler.handle_generator(self.NUM_CLASSES, self.N_IMAGE_CHANNELS, **kwargs)
if ArgHandler.handle_pretrained_generator(**kwargs):
model_path = ArgHandler.handle_model_path(**kwargs)
print('Loading generator net...')
self.generator.load_state_dict(torch.load(model_path, map_location=self.device)['netG_state_dict'])
else:
self.generator.apply(ArgHandler.handle_weights_init(**kwargs))
self.generator.optimizer = optim.Adam(self.generator.parameters(), lr=self.learning_rate,
betas=self.betas)
self.encoder = EncoderNet(self.N_IMAGE_CHANNELS, self.noise_size).to(self.device)
if ArgHandler.handle_pretrained_encoder(**kwargs):
model_path = ArgHandler.handle_model_path(**kwargs)
print('Loading encoder net...')
self.encoder.load_state_dict(torch.load(model_path, map_location=self.device)['netE_state_dict'])
else:
self.encoder.apply(ArgHandler.handle_weights_init(**kwargs))
self.encoder.optimizer = optim.Adam(self.generator.parameters(), lr=self.learning_rate,
betas=self.betas)
self.num_epochs = ArgHandler.handle_num_epochs(**kwargs)
self.batch_size = ArgHandler.handle_batch_size(**kwargs)
self.snapshot_interval, self.do_snapshots = ArgHandler.handle_snapshot_settings(**kwargs)
self.output_path = ArgHandler.handle_output_path(**kwargs)
self.data_augmentation = ArgHandler.handle_augmentation(**kwargs)