-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathScores.py
189 lines (133 loc) · 6.19 KB
/
Scores.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import torch
from torchvision.models.inception import inception_v3
from torch.nn import functional as F
import torch.utils.data
import numpy as np
from scipy.stats import entropy
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
import torchvision
import ssl
from scipy import linalg
from tqdm import tqdm
def load_cifar10_for_inception(batch_size):
"""
Loads Cifar10 dataset
"""
# fix download error
ssl._create_default_https_context = ssl._create_unverified_context
transform = transforms.Compose([transforms.ToTensor(),
transforms.Resize(299),
transforms.CenterCrop(299),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
dataset = torchvision.datasets.CIFAR10(root='./data', download=True, transform=transform)
dataloader = DataLoader(dataset, batch_size=batch_size)
return dataloader
def inception_score_cifar10(device, batch_size=32):
"""
To test if inception score is implemented correctly
"""
dataloader = load_cifar10_for_inception(batch_size)
num_images = len(dataloader.dataset)
model = inception_v3(pretrained=True, transform_input=False).to(device)
model.eval()
predictions = np.zeros((num_images, 1000))
for i, (batch, labels) in enumerate(tqdm(dataloader,desc=f'Predicting labels with inception v3 model',leave=False), 0):
batch = batch.to(device)
batch_size_i = batch.size()[0]
with torch.no_grad():
prediction = model(batch)
prediction = F.softmax(prediction, dim=1).data.cpu().numpy()
predictions[i * batch_size:i * batch_size + batch_size_i] = prediction
py = np.mean(predictions, axis=0)
scores = []
for i in range(num_images):
pyx = predictions[i, :]
scores.append(entropy(pyx, py))
return
def inception_score(images, device, batch_size=32):
"""
Inception score measures how realistic a GAN's output is:
It measures if the images have variety and if each images looks distinctly like something.
If both things are true then the inception score is high,
if either one of the measures are false the inception score is low.
"""
num_images = images.shape[0]
dataset = FakeDataset(images)
dataloader = DataLoader(dataset, batch_size=batch_size)
model = inception_v3(pretrained=True, transform_input=False).to(device)
model.eval()
predictions = np.zeros((num_images, 1000))
for i, batch in enumerate(tqdm(dataloader,desc=f'Predicting labels with inception v3 model',leave=False), 0):
batch = batch.to(device)
batch_size_i = batch.size()[0]
with torch.no_grad():
prediction = model(batch)
prediction = F.softmax(prediction, dim=1).data.cpu().numpy()
predictions[i * batch_size:i * batch_size + batch_size_i] = prediction
py = np.mean(predictions, axis=0)
scores = []
for i in range(num_images):
pyx = predictions[i, :]
scores.append(entropy(pyx, py))
return np.exp(np.mean(scores))
def frechet_inception_distance(generated_images, real_dataset, device, batch_size=32, eps=1e-6):
"""
A lower FID indicates better-quality images abd a higher score indicates a lower-quality image.
"""
generated_dataset = FakeDataset(generated_images)
generated_dataloader = DataLoader(generated_dataset, batch_size)
real_dataset.transform = transforms.Compose([
transforms.Resize(299),
transforms.CenterCrop(299),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
real_dataloader = DataLoader(real_dataset, batch_size)
assert len(generated_dataset) == len(real_dataset)
num_images = len(generated_dataset)
model = inception_v3(pretrained=True, transform_input=False).to(device)
model.eval()
activation = {}
def get_activation(name):
def hook(model, input, output):
activation[name] = output.detach()
return hook
model.avgpool.register_forward_hook(get_activation('avgpool'))
real_activations = np.zeros((num_images, 2048))
for i, (real_image_batch, _) in enumerate(tqdm(real_dataloader, desc=f'Calculating activations of avgpool layer of inception v3 model',leave=False), 0):
batch_size_i = real_image_batch.size()[0]
with torch.no_grad():
output = model(real_image_batch.to(device))
real_activations[i * batch_size:i * batch_size + batch_size_i] = activation['avgpool'].squeeze(3).squeeze(2).data.cpu().numpy()
generated_activations = np.zeros((num_images, 2048))
for i, generated_image_batch in enumerate(tqdm(generated_dataloader, desc=f'Calculating activations of generated images', leave=False)):
batch_size_i = generated_image_batch.size()[0]
with torch.no_grad():
output = model(generated_image_batch.to(device))
generated_activations[i * batch_size: i * batch_size + batch_size_i] = activation['avgpool'].squeeze(3).squeeze(2).data.cpu().numpy()
real_mean = np.mean(real_activations, axis=0)
real_sigma = np.cov(real_activations, rowvar=False)
generated_mean = np.mean(generated_activations, axis=0)
generated_sigma = np.cov(generated_activations, rowvar=False)
ssdiff = np.sum((generated_mean - real_mean)**2.0)
covmean = linalg.sqrtm(generated_sigma.dot(real_sigma))
if np.iscomplexobj(covmean):
covmean = covmean.real
fid = ssdiff + np.trace(generated_sigma + real_sigma - 2.0 * covmean)
return fid
class FakeDataset(Dataset):
def __init__(self, fake_images):
self.fake_images = fake_images
self.transforms = transforms.Compose([
transforms.Resize(299),
transforms.CenterCrop(299),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
def __getitem__(self, item):
fake_image = self.fake_images[item]
fake_image_scaled = self.transforms(fake_image)
return fake_image_scaled
def __len__(self):
return self.fake_images.shape[0]