-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEvaluator.py
137 lines (104 loc) · 4.76 KB
/
Evaluator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import json
from os import listdir
from os.path import isfile, join, basename
from pathlib import Path
import torch
import torchvision.transforms as transforms
from sklearn.preprocessing import OneHotEncoder
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import ArgHandler
from DataLoader import load_cifar10
from Scores import inception_score, frechet_inception_distance
from tqdm import tqdm
def evaluate_model(**kwargs):
# Constants
NUM_CLASSES = 10
N_IMAGE_CHANNELS = 3
# Variables
device = ArgHandler.handle_device(**kwargs)
noise_size = ArgHandler.handle_noise_size(**kwargs)
generator = ArgHandler.handle_generator(NUM_CLASSES, N_IMAGE_CHANNELS, **kwargs)
model_path = ArgHandler.handle_model_path(**kwargs)
batch_size = ArgHandler.handle_batch_size(**kwargs)
name = basename(model_path)
print(f'Evaluation of model: {name}')
# Load generator
generator.load_state_dict(torch.load(model_path, map_location=device)['netG_state_dict'])
# Initialize One Hot Encoder
one_hot_enc = OneHotEncoder()
all_classes = torch.tensor(range(NUM_CLASSES)).reshape(-1, 1)
one_hot_enc.fit(all_classes)
_, test_loader = load_cifar10(batch_size)
num_images = len(test_loader.dataset)
fakes = torch.zeros([num_images, 3, 32, 32], dtype=torch.float32)
for i, (images, labels) in enumerate(tqdm(test_loader,desc=f'Generating {num_images} images:',leave=False), 0):
batch_size_i = images.size()[0]
labels_one_hot = torch.tensor(one_hot_enc.transform(labels.reshape(-1, 1)).toarray(), device=device)
noise = torch.randn(batch_size_i, noise_size, 1, 1, device=device)
with torch.no_grad():
fake = generator(noise, labels_one_hot)
fakes[i * batch_size:i * batch_size + batch_size_i] = fake
print('Calculating inception score...')
i_score = inception_score(fakes, device, batch_size)
print('inception score: ', i_score)
print('Calculating FID score...')
fid_score = frechet_inception_distance(fakes, test_loader.dataset, device, batch_size)
print('frechet inception distance: ', fid_score)
return i_score, fid_score
def evaluate_multiple_models(**kwargs):
model_path = ArgHandler.handle_model_path(**kwargs)
model_files = [f for f in listdir(model_path) if isfile(join(model_path, f))]
scores_dict = dict()
for f in model_files:
model_kwargs = kwargs.copy()
model_kwargs.update({"model_path": join(model_path, f)})
try:
i_score, fid = evaluate_model(**model_kwargs)
scores_dict.update({f: {"inception_score": i_score, "fid": fid}})
except Exception as e:
print(f'An exception:\n "{e}" \n occurred for file: {f}. Will skip this')
return scores_dict
def create_images(**kwargs):
# Constants
NUM_CLASSES = 10
N_IMAGE_CHANNELS = 3
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
# Variables
device = ArgHandler.handle_device(**kwargs)
noise_size = ArgHandler.handle_noise_size(**kwargs)
generator = ArgHandler.handle_generator(NUM_CLASSES, N_IMAGE_CHANNELS, **kwargs)
model_path = ArgHandler.handle_model_path(**kwargs)
output_path = ArgHandler.handle_output_path(**kwargs)
# Load generator
generator.load_state_dict(torch.load(model_path)['netG_state_dict'])
# Initialize One Hot encoder
one_hot_enc = OneHotEncoder()
all_classes = torch.tensor(range(NUM_CLASSES)).reshape(-1, 1)
one_hot_enc.fit(all_classes)
# Do it multiple times
for j in range(10):
# Generate noise and stack 10 copies of that noise
noise = torch.randn(1, noise_size, 1, 1, device=device)
noise = noise.repeat(10, 1, 1, 1)
# Create label as one hot
labels = torch.tensor([range(10)])
labels_one_hot = torch.tensor(one_hot_enc.transform(labels.reshape(-1, 1)).toarray(), device=device)
# Generate batch (fake images + desired classes)
fake_images = generator(noise, labels_one_hot)
# As info:
# normalize = T.Normalize(mean.tolist(), std.tolist())
# denormalize = T.Normalize((-mean / std).tolist(), (1.0 / std).tolist())
transform = transforms.Normalize((-0.5 / 0.5, -0.5 / 0.5, -0.5 / 0.5), (1 / 0.5, 1 / 0.5, 1 / 0.5))
fake = transform(fake_images)
for i, f in enumerate(fake):
# show output
output = f.cpu().detach().numpy()
image = np.transpose(output, (1, 2, 0))
Path(output_path).mkdir(parents=True, exist_ok=True)
im = Image.fromarray((image * 255).astype(np.uint8))
im.save(output_path + f"/{classes[i]}_{j}.png")
plt.imshow(image)
plt.title(f'Class: {classes[i]}')
plt.show()