-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmain.py
175 lines (146 loc) · 9.64 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import argparse
import copy
import logging
import os
import pprint
import random
import numpy as np
import pandas as pd
import torch
import torch.optim as optim
from dataset import MPCNNDatasetFactory
from evaluation import MPCNNEvaluatorFactory
from train import MPCNNTrainerFactory
from utils.serialization import load_checkpoint
from variants import VariantFactory
def get_logger():
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
ch = logging.StreamHandler()
ch.setLevel(logging.DEBUG)
formatter = logging.Formatter('%(levelname)s - %(message)s')
ch.setFormatter(formatter)
logger.addHandler(ch)
return logger
def evaluate_dataset(split_name, dataset_cls, model, embedding, loader, batch_size, device, nonstatic_embedding):
saved_model_evaluator = MPCNNEvaluatorFactory.get_evaluator(dataset_cls, model, embedding, loader, batch_size, device, nonstatic_embedding)
scores, metric_names = saved_model_evaluator.get_scores()
logger.info('Evaluation metrics for {}'.format(split_name))
logger.info('\t'.join([' '] + metric_names))
logger.info('\t'.join([split_name] + list(map(str, scores))))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='PyTorch implementation of Multi-Perspective CNN')
parser.add_argument('model_outfile', help='file to save final model')
parser.add_argument('--arch', help='model architecture to use', default='mpcnn')
parser.add_argument('--dataset', help='dataset to use, one of [sick, msrvid, trecqa, wikiqa, sts, msrp]', default='sick')
parser.add_argument('--word-vectors-dir', help='word vectors directory', default=os.path.join(os.path.dirname(os.path.realpath(__file__)), os.pardir, 'Castor-data', 'embeddings', 'GloVe'))
parser.add_argument('--word-vectors-file', help='word vectors filename', default='glove.840B.300d.txt')
parser.add_argument('--word-vectors-dim', type=int, default=300, help='number of dimensions of word vectors (default: 300)')
parser.add_argument('--skip-training', help='will load pre-trained model', action='store_true')
parser.add_argument('--device', type=int, default=0, help='GPU device, -1 for CPU (default: 0)')
parser.add_argument('--wide-conv', action='store_true', default=False, help='use wide convolution instead of narrow convolution (default: false)')
parser.add_argument('--multichannel', action='store_true', default=False, help='use multichannels to enable embedding update (default: false)')
parser.add_argument('--attention', choices=['none', 'basic', 'idf', 'modified_euclidean'], default='none', help='type of attention to use')
parser.add_argument('--sparse-features', action='store_true', default=False, help='use sparse features (default: false)')
parser.add_argument('--batch-size', type=int, default=64, help='input batch size for training (default: 64)')
parser.add_argument('--epochs', type=int, default=10, help='number of epochs to train (default: 10)')
parser.add_argument('--optimizer', type=str, default='adam', choices=['adam', 'sgd', 'adadelta'], help='optimizer to use (default: adam)')
parser.add_argument('--lr', type=float, default=0.001, help='learning rate (default: 0.001)')
parser.add_argument('--lr-reduce-factor', type=float, default=0.3, help='learning rate reduce factor after plateau (default: 0.3)')
parser.add_argument('--patience', type=float, default=2, help='learning rate patience after seeing plateau (default: 2)')
parser.add_argument('--momentum', type=float, default=0, help='momentum (default: 0)')
parser.add_argument('--epsilon', type=float, default=1e-8, help='Optimizer epsilon (default: 1e-8)')
parser.add_argument('--log-interval', type=int, default=10, help='how many batches to wait before logging training status (default: 10)')
parser.add_argument('--regularization', type=float, default=0.0001, help='Regularization for the optimizer (default: 0.0001)')
parser.add_argument('--max-window-size', type=int, default=3, help='windows sizes will be [1,max_window_size] and infinity (default: 3)')
parser.add_argument('--holistic-filters', type=int, default=300, help='number of holistic filters (default: 300)')
parser.add_argument('--per-dim-filters', type=int, default=20, help='number of per-dimension filters (default: 20)')
parser.add_argument('--hidden-units', type=int, default=150, help='number of hidden units in each of the two hidden layers (default: 150)')
parser.add_argument('--dropout', type=float, default=0.5, help='dropout probability (default: 0.5)')
parser.add_argument('--seed', type=int, default=1234, help='random seed (default: 1234)')
parser.add_argument('--tensorboard', action='store_true', default=False, help='use TensorBoard to visualize training (default: false)')
parser.add_argument('--run-label', type=str, help='label to describe run')
parser.add_argument('--save-predictions', action='store_true', default=False, help='save predictions for debugging (default: false)')
args = parser.parse_args()
device = torch.device(f'cuda:{args.device}' if torch.cuda.is_available() and args.device >= 0 else 'cpu')
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.device != -1:
torch.cuda.manual_seed(args.seed)
logger = get_logger()
logger.info(pprint.pformat(vars(args)))
dataset_cls, embedding, train_loader, test_loader, dev_loader \
= MPCNNDatasetFactory.get_dataset(args.dataset, args.word_vectors_dir, args.word_vectors_file, args.batch_size, device)
if args.multichannel:
nonstatic_embedding = copy.deepcopy(embedding)
nonstatic_embedding.weight.requires_grad = True
else:
nonstatic_embedding = None
model = VariantFactory.get_model(args, dataset_cls)
model = model.to(device)
embedding = embedding.to(device)
if args.multichannel:
nonstatic_embedding = nonstatic_embedding.to(device)
optimizer = None
if args.optimizer == 'adam':
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.regularization, eps=args.epsilon)
elif args.optimizer == 'sgd':
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.regularization)
else:
optimizer = optim.Adadelta(model.parameters(), lr=args.lr, weight_decay=args.regularization, eps=args.epsilon)
train_evaluator = MPCNNEvaluatorFactory.get_evaluator(dataset_cls, model, embedding, train_loader, args.batch_size, args.device, nonstatic_embedding)
test_evaluator = MPCNNEvaluatorFactory.get_evaluator(dataset_cls, model, embedding, test_loader, args.batch_size, args.device, nonstatic_embedding)
dev_evaluator = MPCNNEvaluatorFactory.get_evaluator(dataset_cls, model, embedding, dev_loader, args.batch_size, args.device, nonstatic_embedding)
trainer_config = {
'optimizer': optimizer,
'batch_size': args.batch_size,
'log_interval': args.log_interval,
'model_outfile': args.model_outfile,
'lr_reduce_factor': args.lr_reduce_factor,
'patience': args.patience,
'tensorboard': args.tensorboard,
'run_label': args.run_label,
'logger': logger
}
trainer = MPCNNTrainerFactory.get_trainer(args.dataset, model, embedding, train_loader, trainer_config, train_evaluator, test_evaluator, dev_evaluator, nonstatic_embedding)
# TODO currently saving & loading non-static embedding is not supported
if not args.skip_training:
total_params = 0
for param in model.parameters():
size = [s for s in param.size()]
total_params += np.prod(size)
logger.info('Total number of parameters: %s', total_params)
if args.multichannel:
logger.info('Nonstatic embedding size: %s', nonstatic_embedding.weight.size())
trainer.train(args.epochs)
_, _, state_dict, _, _ = load_checkpoint(args.model_outfile)
for k, tensor in state_dict.items():
state_dict[k] = tensor.to(device)
model.load_state_dict(state_dict)
if dev_loader:
evaluate_dataset('dev', dataset_cls, model, embedding, dev_loader, args.batch_size, args.device, nonstatic_embedding)
evaluate_dataset('test', dataset_cls, model, embedding, test_loader, args.batch_size, args.device, nonstatic_embedding)
if args.save_predictions:
for dataset_name, loader in zip(('train', 'test', 'dev'), (train_loader, test_loader, dev_loader)):
if loader is None:
continue
all_sent_ids, all_predictions, all_labels = [], [], []
all_sentences_1, all_sentences_2 = [], []
for batch in loader:
sent_ids = batch.id.int().cpu().detach().numpy()
# Select embedding
sent1 = embedding(batch.sentence_1).transpose(1, 2)
sent2 = embedding(batch.sentence_2).transpose(1, 2)
predictions = model(sent1, sent2, batch.ext_feats)
labels = batch.label
predictions, labels = train_evaluator.get_final_prediction_and_label(predictions, labels)
predictions = predictions.cpu().detach().numpy()
labels = labels.cpu().detach().numpy()
all_sent_ids.extend(sent_ids)
all_predictions.extend(predictions)
all_labels.extend(labels)
all_sentences_1.extend(batch.sentence_1_raw)
all_sentences_2.extend(batch.sentence_2_raw)
df = pd.DataFrame({'id': all_sent_ids, 'sentence1': all_sentences_1, 'sentence2': all_sentences_2, 'predictions': all_predictions, 'labels': all_labels})
df.to_csv('{}_{}_predictions.csv'.format(args.dataset, dataset_name), index=False)