-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmotor.c
582 lines (541 loc) · 19.9 KB
/
motor.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
/*
* c't-Bot
*
* This program is free software; you can redistribute it
* and/or modify it under the terms of the GNU General
* Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your
* option) any later version.
* This program is distributed in the hope that it will be
* useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307, USA.
*
*/
/**
* \file motor.c
* \brief High-Level-Routinen fuer die Motorsteuerung des c't-Bot
* \author Benjamin Benz ([email protected])
* \author Timo Sandmann ([email protected])
* \date 17.10.2006
*/
#include <stdlib.h>
#include <string.h>
#include "ct-Bot.h"
#include "motor.h"
#include "bot-local.h"
#include "motor-low.h"
#include "timer.h"
#include "sensor.h"
#include "sensor-low.h"
#include "display.h"
#include "bot-logic/bot-logic.h"
#include "rc5-codes.h"
#include "eeprom.h"
#include "math_utils.h"
#include "ui/available_screens.h"
int16_t speed_l = 0; /**< Sollgeschwindigkeit linker Motor */
int16_t speed_r = 0; /**< Sollgeschwindigkeit rechter Motor */
uint8_t servo_pos[2] = {DOOR_OPEN, CAM_CENTER}; /**< Positionen der Servos */
uint8_t servo_active[2] = {0, 0}; /**< Aktivitaet der Servos */
#ifdef SPEED_CONTROL_AVAILABLE
#ifdef ADJUST_PID_PARAMS
/* PID-Parameter variabel */
int8_t Kp = PID_Kp; /**< PID-Parameter proportional */
int8_t Ki = PID_Ki; /**< PID-Parameter intergral */
int8_t Kd = PID_Kd; /**< PID-Parameter differential */
#else
/* PID-Koeffizienten aus Parametern berechnen */
#define Q0 ( PID_Kp + PID_Kd/PID_Ta) /**< PID-Koeffizient Fehler */
#define Q1 (-PID_Kp - 2*PID_Kd/PID_Ta + PID_Ki*PID_Ta) /**< PID-Koeffizient letzter Fehler */
#define Q2 ( PID_Kd/PID_Ta) /**< PID-Koeffizient vorletzter Fehler */
#endif // ADJUST_PID_PARAMS
/** Dividend fuer Umrechnung von Ticks [176 us] in Geschwindigkeit [mm/s] */
#define TICKS_TO_SPEED (uint16_t)((float)WHEEL_PERIMETER/ENCODER_MARKS*1000000/TIMER_STEPS) // = 8475*2
#define TICKS_TO_SPEED_0 (TICKS_TO_SPEED / 2) /**< Dividend fuer shift == 0 */
#define TICKS_TO_SPEED_1 (TICKS_TO_SPEED / 2 * 2) /**< Dividend fuer shift == 1 */
#define TICKS_TO_SPEED_2 (TICKS_TO_SPEED / 2 * 4) /**< Dividend fuer shift == 2 */
/** Typ fuer PWM-Lookup-Werte */
typedef struct {
uint8_t pwm; /**< PWM-Wert/2 */
uint8_t rating; /**< Qualitaet des PWM-Werts */
} pwmMap_t;
static uint8_t encoderTargetRate[2] = {0,0}; /**< Fuehrungsgroesse absolut [0; 256] */
static uint8_t start_signal[2] = {0,0};
static volatile pwmMap_t pwm_values[4] = {{0,255},{0,255},{0,255},{0,255}}; /**< Lookup fuer Zuordnung GeschwindigkeitSLOW <-> PWM */
#ifdef DISPLAY_REGELUNG_AVAILABLE
uint8_t encoderRateInfo[2]; /**< Puffer fuer Displayausgabe der Ist-Geschwindigkeit */
#endif
#endif // SPEED_CONTROL_AVAILABLE
/* EEPROM-Variable immer deklarieren, damit die Adresse sich nicht veraendert je nach #define */
uint8_t EEPROM pwmSlow[4] = {255, 255, 255, 255}; /**< EEPROM-Kopie von pwm_values */
direction_t direction; /**< Drehrichtung der Motoren */
#ifdef SPEED_CONTROL_AVAILABLE
/**
* \brief Drehzahlregelung fuer die Motoren des c't-Bots
* \param dev 0: linker Motor, 1: rechter Motor
* \param actVar Zeiger auf Stellgroesse (nicht volatile, da Aufruf aus ISR heraus)
* \param encTime Zeiger auf Encodertimestamps, mit denen gerechnet werden soll
* \param i_time Index des aktuellen Timestamps in encTime
* \param enc Encoder-Pegel (binaer) von dev
*
* Drehzahlregelung sorgt fuer konstante Drehzahl und somit annaehernd Geradeauslauf.
* Feintuning von PID_Kp bis PID_SPEED_THRESHOLD (bot-local.h) verbessert die Genauigkeit und Schnelligkeit der Regelung.
* Mit PWMMIN, PWMSTART_L und PWMSTART_R laesst sich der Minimal- bzw. Startwert fuer die Motoren anpassen.
*/
void speed_control(uint8_t dev, int16_t * actVar, uint16_t * encTime, uint8_t i_time, uint8_t enc) {
/* Speicher fuer alte Regeldifferenzen */
static int16_t lastErr[2] = {0,0};
static int16_t last2Err[2] = {0,0};
static uint8_t orignalTargetRate[2] = {0,0};
if (encoderTargetRate[dev] == 0) {
/* Fuer Stopp einfach alles nullsetzen */
*actVar = 0;
lastErr[dev] = 0;
last2Err[dev] = 0;
} else {
/* Zeitdifferenz zwischen aktueller und ([vor- | 4.-])letzter Encoderflanke berechnen [176 us] */
register uint8_t * p_time = (uint8_t *) encTime;
uint16_t ticks_to_speed;
uint16_t dt = *(uint16_t *) (p_time + i_time); // aktueller Timestamp
int8_t enc_correct = 0;
/* Beim ersten Aufruf mit neuem Speed beruecksichtigen wir die Beschleunigung */
if (start_signal[dev] == PID_START_DELAY) {
orignalTargetRate[dev] = encoderTargetRate[dev]; // Zielgeschwindigkeit merken
encoderTargetRate[dev] = BOT_SPEED_SLOW / 2; // laaaangsam anfahren
#ifdef SPEED_LOG_AVAILABLE
/* Daten loggen */
register uint8_t index = slog_i[dev];
if (index < 24) {
slog->data[dev][index].encRate = 1; // Regelgroesse
slog->data[dev][index].err = encoderTargetRate[dev]; // Regeldifferenz
slog->data[dev][index].pwm = *actVar; // Stellgroesse
slog->data[dev][index].targetRate = encoderTargetRate[dev]; // Fuehrungsgroesse
slog->data[dev][index].time = tickCount.u32; // Timestamp
slog->data[dev][index++].enc = enc; // Encoder Pegel
slog_i[dev] = (uint8_t) (index > 24 ? 0 : index); // Z/25Z
}
#endif // SPEED_LOG_AVAILABLE
} else { // 1. Aufruf => es gibt noch keinen korrekten Timestamp in der Vergangenheit => bis zum 2. Aufruf nix tun
if (encoderTargetRate[dev] >= PID_SPEED_THRESHOLD) {
i_time = (uint8_t) (i_time - 4 * sizeof(encTime[0])); // Index 4.letzter Timestamp
ticks_to_speed = TICKS_TO_SPEED_2;
} else if (encoderTargetRate[dev] < PID_SPEED_THRESHOLD / 2) {
i_time = (uint8_t) (i_time - sizeof(encTime[0])); // Index letzter Timestamp
ticks_to_speed = TICKS_TO_SPEED_0;
/* Regelgroesse korrigieren, wenn mit jeder Encoderflanke gerechnet wurde */
enc_correct = dev == 0 ? ENC_CORRECT_L : ENC_CORRECT_R;
if (enc == 1) {
enc_correct = (int8_t) -enc_correct;
}
} else {
i_time = (uint8_t) (i_time - 2 * sizeof(encTime[0])); // Index vorletzter Timestamp
ticks_to_speed = TICKS_TO_SPEED_1;
}
i_time = (uint8_t) (i_time & 0xf); // Index auf 4 Bit begrenzen
dt -= *(uint16_t *) (p_time + i_time); // gewaehlten Timestamp subtrahieren
/* Bei Fahrt Regelgroesse berechnen */
uint8_t encoderRate = (uint8_t) (ticks_to_speed / dt); // <dt> = [37; 800] -> <encoderRate> = [229; 10]
if (encoderRate > 6) {
encoderRate = (uint8_t) (encoderRate + enc_correct);
}
/* Regeldifferenz berechnen */
int16_t err = (encoderTargetRate[dev] - encoderRate);
int16_t diff;
#ifdef ADJUST_PID_PARAMS
/* PID-Koeffizienten berechnen, falls PID-Parameter variabel */
int16_t q0 = Kp + Kd / PID_Ta;
int16_t q1 = -Kp - 2 * Kd / PID_Ta + Ki * PID_Ta;
int16_t q2 = Kd / PID_Ta;
/* Stellgroesse mit PID-Reglergleichung berechnen */
diff = (q0 * err + q1 * lastErr[dev] + q2 * last2Err[dev]) >> PID_SHIFT;
#else
diff = (Q0 * err + Q1 * lastErr[dev] + Q2 * last2Err[dev]) >> PID_SHIFT;
#endif // ADJUST_PID_PARAMS
*actVar += diff;
/* berechnete Stellgroesse auf zulaessige Werte begrenzen */
if (*actVar > PWMMAX) *actVar = PWMMAX;
else if (*actVar < PWMMIN) *actVar = PWMMIN;
/* PWM-Lookup updaten */
if (diff != 0 && encoderTargetRate[dev] == BOT_SPEED_SLOW/2 && start_signal[dev] == 0) {
uint8_t lastErrors = (uint8_t) (abs(last2Err[dev]) + abs(lastErr[dev]) + abs(err));
uint8_t turn = 0;
if (direction.left != direction.right) turn = 2;
if (pwm_values[dev + turn].rating >= lastErrors) {
pwm_values[dev + turn].pwm = (uint8_t) (*actVar >> 1);
pwm_values[dev + turn].rating = lastErrors;
}
}
/* Regeldifferenzen speichern */
last2Err[dev] = lastErr[dev];
lastErr[dev] = err;
/* Regelgroesse speichern, falls Displayausgabe gewuenscht */
#ifdef DISPLAY_REGELUNG_AVAILABLE
encoderRateInfo[dev] = encoderRate;
#endif
#ifdef SPEED_LOG_AVAILABLE
/* Daten loggen */
register uint8_t index = slog_i[dev];
if (index < 24) {
slog->data[dev][index].encRate = encoderRate; // Regelgroesse
slog->data[dev][index].err = err; // Regeldifferenz
slog->data[dev][index].pwm = *actVar; // Stellgroesse
slog->data[dev][index].targetRate = encoderTargetRate[dev]; // Fuehrungsgroesse
slog->data[dev][index].time = tickCount.u32; // Timestamp
slog->data[dev][index++].enc = enc; // Encoder Pegel
slog_i[dev] = (uint8_t) (index > 24 ? 0 : index); // Z/25Z
}
#endif // SPEED_LOG_AVAILABLE
}
if (start_signal[dev] > 0) {
start_signal[dev]--;
/* langsam beschleunigen - eigentlich muesste man das sinusartig tun, aber das ist zu aufwendig
* Verbesserungsmoeglichkeit: Faktoren bei START_DELAY optimieren (=> Sinus) */
if (start_signal[dev] == (uint8_t) (PID_START_DELAY * 0.75f)) {
encoderTargetRate[dev] = (uint8_t) (encoderTargetRate[dev] + ((orignalTargetRate[dev] - BOT_SPEED_SLOW / 2) >> 2)); // +1/4
} else if (start_signal[dev] == (uint8_t) (PID_START_DELAY * 0.5f)) {
encoderTargetRate[dev] = (uint8_t) (encoderTargetRate[dev] + ((orignalTargetRate[dev] - BOT_SPEED_SLOW / 2) >> 2)); // +2/4
} else if (start_signal[dev] == (uint8_t) (PID_START_DELAY * 0.25f)) {
encoderTargetRate[dev] = (uint8_t) (encoderTargetRate[dev] + ((orignalTargetRate[dev] - BOT_SPEED_SLOW / 2) >> 2)); // +3/4
} else if (start_signal[dev] == 0) {
encoderTargetRate[dev] = orignalTargetRate[dev];
}
}
}
/* PWM-Wert aktualisieren */
motor_update(dev);
}
#ifdef DISPLAY_REGELUNG_AVAILABLE
/**
* \brief Zeigt Debug-Informationen der Motorregelung an.
*
* Dargestellt werden pro Moto Ist- / Sollgeschwindigkeit, die Differenz davon, der PWM-Stellwert und die
* Reglerparameter Kp, Ki und Kd.
* Die Tasten 1 und 4 veraendern Kp, 2 und 5 veraendern Ki, 3 und 6 veraendern Kd, wenn ADJUST_PID_PARAMS an ist.
*/
void speedcontrol_display(void) {
if (speed_l != 0) {
display_cursor(1, 2);
display_printf("%3u/%3u", encoderRateInfo[0] << 1, abs(speed_l));
#ifndef BEHAVIOUR_CALIBRATE_PID_AVAILABLE
display_cursor(2, 1);
display_printf("e = %4d", abs(speed_l) - (encoderRateInfo[0] << 1));
#endif
display_cursor(3, 1);
uint8_t sreg = SREG;
__builtin_avr_cli();
const int16_t motor_l = motor_left;
SREG = sreg;
display_printf("L = %4d", motor_l);
}
if (speed_r != 0) {
display_cursor(1, 12);
display_printf("%3d/%3d", encoderRateInfo[1] << 1, abs(speed_r));
#ifndef BEHAVIOUR_CALIBRATE_PID_AVAILABLE
display_cursor(2, 11);
display_printf("e = %4d", abs(speed_r) - (encoderRateInfo[1] << 1));
#endif
display_cursor(3, 11);
uint8_t sreg = SREG;
__builtin_avr_cli();
const int16_t motor_r = motor_right;
SREG = sreg;
display_printf("R = %4d", motor_r);
}
#ifdef BEHAVIOUR_CALIBRATE_PID_AVAILABLE
display_cursor(2, 1);
display_printf("ETE = %3u Minuten", cal_pid_ete / 60);
#endif
display_cursor(4, 1);
#ifdef ADJUST_PID_PARAMS
display_printf("Kp=%3d Ki=%3d Kd=%3d", Kp, Ki, Kd);
#else
display_printf("Kp=%3d Ki=%3d Kd=%3d", PID_Kp, PID_Ki, PID_Kd);
#endif // ADJUST_PID_PARAMS
/* Keyhandler */
switch (RC5_Code) {
/* PWM-Parameter einstellbar */
#ifdef ADJUST_PID_PARAMS
case RC5_CODE_1: Kp++; RC5_Code = 0; break;
case RC5_CODE_4: Kp--; RC5_Code = 0; break;
case RC5_CODE_2: Ki++; RC5_Code = 0; break;
case RC5_CODE_5: Ki--; RC5_Code = 0; break;
case RC5_CODE_3: Kd++; RC5_Code = 0; break;
case RC5_CODE_6: Kd--; RC5_Code = 0; break;
#endif // ADJUST_PID_PARAMS
#ifdef BEHAVIOUR_AVAILABLE
case RC5_CODE_7:
target_speed_l = BOT_SPEED_FOLLOW; target_speed_r = BOT_SPEED_FOLLOW; RC5_Code = 0; break;
case RC5_CODE_8:
target_speed_l = BOT_SPEED_MEDIUM; target_speed_r = BOT_SPEED_MEDIUM; RC5_Code = 0; break;
case RC5_CODE_9:
target_speed_l = BOT_SPEED_FAST; target_speed_r = BOT_SPEED_FAST; RC5_Code = 0; break;
#endif // BEHAVIOUR_AVAILABLE
}
}
#endif // DISPLAY_REGELUNG_AVAILABLE
#endif // SPEED_CONTROL_AVAILABLE
/**
* \brief Direkter Zugriff auf den Motor
* \param left Geschwindigkeit fuer den linken Motor
* \param right Geschwindigkeit fuer den rechten Motor
*
* Geschwindigkeit liegt zwischen -450 und +450. 0 bedeutet Stillstand, 450 volle Kraft voraus, -450 volle Kraft zurueck.
* Sinnvoll ist die Verwendung der Konstanten: BOT_SPEED_XXX, also z.B. motor_set(BOT_SPEED_SLOW, -BOT_SPEED_SLOW) fuer eine langsame Drehung
*/
void motor_set(int16_t left, int16_t right) {
/* Drehrichtung fuer beide Motoren ermitteln */
int8_t speedSignLeft = 1; // 1: vor; -1: zurueck
if (left < 0) {
speedSignLeft = -1;
left = (int16_t) -left; // Richtung zum Rechnen zunaechst verwerfen
}
int8_t speedSignRight = 1;
if (right < 0) {
speedSignRight = -1;
right = (int16_t) -right;
}
/* Geschwindigkeiten pruefen und begrenzen */
if (left == BOT_SPEED_IGNORE) left = BOT_SPEED_STOP;
else if (left > BOT_SPEED_MAX) left = BOT_SPEED_MAX;
else if (left != 0 && left < BOT_SPEED_MIN) left = BOT_SPEED_MIN;
if (right == BOT_SPEED_IGNORE) right = BOT_SPEED_STOP;
else if (right > BOT_SPEED_MAX) right = BOT_SPEED_MAX;
else if (right != 0 && right < BOT_SPEED_MIN) right = BOT_SPEED_MIN;
/* Stellwerte und Zielgeschwindigkeit setzen */
#ifdef SPEED_CONTROL_AVAILABLE
/* Bei aktivierter Motorregelung neue Fuehrungsgroesse links setzen */
if (speed_l != left * speedSignLeft && (start_signal[0] == 0 || left == 0 || sign16(speed_l) != speedSignLeft)) {
int16_t motor_l = 0;
if (encoderTargetRate[0] == 0) {
start_signal[0] = PID_START_DELAY;
if (speedSignLeft == speedSignRight) {
motor_l = (pwm_values[0].pwm << 1) + (int16_t)(PWMSTART_L * 1.5f); // [0; 511]
} else {
motor_l = (pwm_values[2].pwm << 1) + PWMSTART_L;
}
}
encoderTargetRate[0] = (uint8_t) (left >> 1); // [0; BOT_SPEED_MAX / 2]
if ((left >> 1) == 0) {
motor_l = 0;
start_signal[0] = 0;
}
/* Geschwindigkeit und Richtung links speichern */
if (left != 0) {
if (speedSignLeft > 0) {
direction.left = DIRECTION_FORWARD;
speed_l = left;
} else {
direction.left = DIRECTION_BACKWARD;
speed_l = -left;
}
} else {
speed_l = 0;
}
if (motor_l) {
/* PWM-Wert setzen */
#ifdef MCU
uint8_t sreg = SREG;
__builtin_avr_cli();
#endif // MCU
motor_left = motor_l;
#ifdef MCU
SREG = sreg;
#endif
motor_update(0);
}
}
/* Neue Fuehrungsgroesse rechts setzen */
if (speed_r != right * speedSignRight && (start_signal[1] == 0 || right == 0 || sign16(speed_r) != speedSignRight)) {
int16_t motor_r = 0;
if (encoderTargetRate[1] == 0) {
start_signal[1] = PID_START_DELAY;
if (speedSignLeft == speedSignRight) {
motor_r = (pwm_values[1].pwm << 1) + (int16_t)(PWMSTART_R * 1.5f); // [0; 511]
} else {
motor_r = (pwm_values[3].pwm << 1) + PWMSTART_R;
}
}
encoderTargetRate[1] = (uint8_t) (right >> 1); // [0; BOT_SPEED_MAX / 2]
if ((right >> 1) == 0) {
motor_r = 0;
start_signal[1] = 0;
}
/* Geschwindigkeit und Richtung rechts speichern */
if (right != 0) {
if (speedSignRight > 0) {
direction.right = DIRECTION_FORWARD;
speed_r = right;
} else {
direction.right = DIRECTION_BACKWARD;
speed_r = -right;
}
} else {
speed_r = 0;
}
if (motor_r) {
/* PWM-Wert setzen */
#ifdef MCU
uint8_t sreg = SREG;
__builtin_avr_cli();
#endif // MCU
motor_right = motor_r;
#ifdef MCU
SREG = sreg;
#endif
motor_update(1);
}
}
/* PWM-Lookup im EEPROM updaten */
static uint16_t old_pwm_ticks = 0;
static uint8_t i = 0; // nachdem wir 1 Byte geschrieben haben, muessten wir 3.3 ms warten,
if (i != 0 || timer_ms_passed_16(&old_pwm_ticks, 10000)) { // alle 10 s
uint8_t tmp = pwm_values[i].pwm; // darum schreiben wir erst im naechsten Aufruf das 2. Byte ins EEPROM usw. :-)
ctbot_eeprom_update_byte(&pwmSlow[i], tmp);
if (++i == 4) { // alle Daten gesichert => 10 s schlafen
i = 0;
}
}
#else // ! SPEED_CONTROL_AVAILABLE
#ifdef MCU
/* Geschwindigkeit als PWM-Wert an die Motoren weitergeben */
if (speedSignLeft > 0) {
direction.left = DIRECTION_FORWARD;
speed_l = left;
} else{
direction.left = DIRECTION_BACKWARD;
speed_l = -left;
}
int16_t pwm;
if (left <= BOT_SPEED_NORMAL) {
pwm = (int16_t)(((float)PWMMAX / (BOT_SPEED_MAX * 2.f)) * left) + 30;
} else {
pwm = (int16_t)(((float)PWMMAX / (BOT_SPEED_MAX * 1.1f)) * left) - 30;
}
motor_left = left == 0 ? 0 : pwm;
if (speedSignRight > 0) {
direction.right = DIRECTION_FORWARD;
speed_r = right;
} else{
direction.right = DIRECTION_BACKWARD;
speed_r = -right;
}
if (right <= BOT_SPEED_NORMAL) {
pwm = (int16_t)(((float)PWMMAX / (BOT_SPEED_MAX * 2.f)) * right) + 30;
} else {
pwm = (int16_t)(((float)PWMMAX / (BOT_SPEED_MAX * 1.1f)) * right) - 30;
}
motor_right = right == 0 ? 0 : pwm;
motor_update(0);
motor_update(1);
#else
/* PC-Version */
#ifdef ARM_LINUX_BOARD
speed_l = (int16_t) (left * speedSignLeft);
speed_r = (int16_t) (right * speedSignRight);
#else
speed_l = left * speedSignLeft / 2;
speed_r = right * speedSignRight / 2;
#endif // ARM_LINUX_BOARD
bot_motor(speed_l, speed_r);
#endif // MCU
#endif // SPEED_CONTROL_AVAILABLE
}
/**
* Initialisiere den Motorkrams
*/
void motor_init(void) {
#ifdef SPEED_CONTROL_AVAILABLE
/* links */
uint8_t tmp = ctbot_eeprom_read_byte(&pwmSlow[0]);
if (tmp < (511 - (uint16_t) (PWMSTART_L * 1.5f)) / 2) pwm_values[0].pwm = tmp;
else pwm_values[0].pwm = 0;
tmp = ctbot_eeprom_read_byte(&pwmSlow[2]);
if (tmp < (511 - PWMSTART_L) / 2) pwm_values[2].pwm = tmp;
else pwm_values[2].pwm = 0;
/* rechts */
tmp = ctbot_eeprom_read_byte(&pwmSlow[1]);
if (tmp < (511 - (uint16_t) (PWMSTART_R * 1.5f))/2) pwm_values[1].pwm = tmp;
else pwm_values[1].pwm = 0;
tmp = ctbot_eeprom_read_byte(&pwmSlow[3]);
if (tmp < (511 - PWMSTART_R) / 2) pwm_values[3].pwm = tmp;
else pwm_values[3].pwm = 0;
#endif // SPEED_CONTROL_AVAILABLE
motor_low_init();
}
/**
* \brief Stellt die Servos
* \param servo Nummer des Servos
* \param pos Zielwert
*
* Sinnvolle Werte liegen zwischen DOOR_CLOSE / CAM_LEFT und DOOR_OPEN / CAM_RIGHT oder SERVO_OFF fuer Servo aus
*/
void servo_set(uint8_t servo, uint8_t pos) {
if (servo < SERVO1 || servo > SERVO2) {
return;
}
if ((servo == SERVO1) && (pos != SERVO_OFF)) {
if (pos < DOOR_CLOSE) {
pos = DOOR_CLOSE;
} else if (pos > DOOR_OPEN) {
pos = DOOR_OPEN;
}
servo_pos[0] = pos;
}
if ((servo == SERVO2) && (pos != SERVO_OFF)) {
if (pos < CAM_LEFT) {
pos = CAM_LEFT;
} else if (pos > CAM_RIGHT) {
pos = CAM_RIGHT;
}
servo_pos[1] = pos;
}
servo_active[servo - 1] = pos != SERVO_OFF;
servo_low(servo, pos);
}
#ifdef SPEED_CONTROL_AVAILABLE
/* Parameter-Wertebereiche pruefen */
#if PID_Kp > 127 || PID_Kp < 0
#error PID_Kp out of range [0; 127]!
#endif
#if PID_Ki > 127 || PID_Ki < 0
#error PID_Ki out of range [0; 127]!
#endif
#if PID_Kd > 127 || PID_Kd < 0
#error PID_Kd out of range [0; 127]!
#endif
#if PID_Ta > 127 || PID_Ta < 1
#error PID_Ta out of range [1; 127]!
#endif
#if PID_SHIFT > 127 || PID_SHIFT < 0
#error PID_SHIFT out of range [0; 127]!
#endif
#if PID_TIME > 655 || PID_TIME < 0
#error PID_TIME out of range [0; 655]!
#endif
#if PID_SPEED_THRESHOLD > (BOT_SPEED_MAX/2) || PID_SPEED_THRESHOLD < BOT_SPEED_MIN
#error PID_SPEED_THRESHOLD out of range [BOT_SPEED_MIN; BOT_SPEED_MAX/2]!
#endif
#if PID_START_DELAY > 255 || PID_START_DELAY < 0
#error PID_START_DELAY out of range [0; 255]!
#endif
#if PWMMAX > 511
#error PWMMAX out of range [PWMMIN; 511]!
#endif
#if PWMMIN >= PWMMAX || PWMMIN < 0
#error PWMMIN out of range [0; PWMMAX)!
#endif
#if PWMMAX <= PWMMIN
#error PWMMAX out of range (PWMMIN; 511]!
#endif
#if PWMSTART_L*3/2 > PWMMAX || PWMSTART_L < PWMMIN
#error PWMSTART_L out of range [PWMMIN; PWMMAX/1.5]!
#endif
#if PWMSTART_R*3/2 > PWMMAX || PWMSTART_R < PWMMIN
#error PWMSTART_R out of range [PWMMIN; PWMMAX/1.5]!
#endif
#endif // SPEED_CONTROL_AVAILABLE