-
Notifications
You must be signed in to change notification settings - Fork 121
/
Copy pathhome-yolo.py
executable file
·434 lines (350 loc) · 16.9 KB
/
home-yolo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
# home-yolo.py
"""
Main script to run the License Plate Recognition (LPR) application. This application
uses deep learning models to detect and recognize license plates and characters.
It is built with PySide6 for the GUI and utilizes PyTorch for model inference.
Requirements:
- PySide6 for the GUI
- PyTorch for deep learning inference
- Pillow for image processing
- OpenCV for video and image manipulation
"""
import functools
import gc
import statistics
import time
import warnings
from pathlib import Path
import torch
from PIL import ImageOps
from PySide6 import QtWidgets
from PySide6.QtCore import QThread, Signal, QSize
from PySide6.QtGui import QImage, QIcon, QAction, QPainter
from PySide6.QtWidgets import QTableWidgetItem, QGraphicsScene
from qtpy.uic import loadUi
import ai.img_model as imgModel
from ai.img_model import *
from configParams import Parameters
from database.db_entries_utils import db_entries_time, dbGetAllEntries
from database.db_resident_utils import db_get_plate_status, db_get_plate_owner_name
from enteries_window import EnteriesWindow
from helper.gui_maker import configure_main_table_widget, create_image_label, on_label_double_click, center_widget, \
get_status_text, get_status_color, \
create_styled_button
from helper.text_decorators import convert_english_to_persian, clean_license_plate_text, join_elements, \
convert_persian_to_english, split_string_language_specific
from resident_view import residentView
from residents_edit import residentsAddNewWindow
from residents_main import residentsWindow
warnings.filterwarnings("ignore", category=UserWarning)
params = Parameters()
import sys
sys.path.append('yolov5')
def get_device():
"""
Determines the device to run the PyTorch models on.
Returns a torch.device object representing the device (CUDA, MPS, or CPU).
"""
if torch.cuda.is_available():
return torch.device("cuda")
elif torch.backends.mps.is_available():
return torch.device("mps")
else:
return torch.device("cpu")
modelPlate = torch.hub.load('yolov5', 'custom', params.modelPlate_path, source='local', force_reload=True)
# modelPlate = modelPlate.to(device())
modelCharX = torch.hub.load('yolov5', 'custom', params.modelCharX_path, source='local', force_reload=True)
# modelCharX = modelCharX.to(device())
class MainWindow(QtWidgets.QMainWindow):
"""
The main window class of the LPR application.
It sets up the user interface and connects signals and slots.
"""
def __init__(self):
"""
Initializes the main window and its components.
"""
super(MainWindow, self).__init__()
loadUi('./gui/mainFinal.ui', self)
self.setFixedSize(self.size())
self.camImage = None
self.plateImage = None
self.residentsWindow = None
self.enterieswindow = None
self.startButton.clicked.connect(self.start_webcam)
self.stopButton.clicked.connect(self.stop_webcam)
self.usersListButton.clicked.connect(self.show_residents_list)
self.enteriesListButton.clicked.connect(self.show_entries_list)
exitAct = QAction("Exit", self)
exitAct.setShortcut("Ctrl+Q")
self.startButton.setIcon(QPixmap("./icons/icons8-play-80.png"))
self.startButton.setIconSize(QSize(40, 40))
self.stopButton.setIcon(QPixmap("./icons/icons8-stop-80.png"))
self.stopButton.setIconSize(QSize(40, 40))
self.usersListButton.setIcon(QPixmap("./icons/icons8-people-64.png"))
self.usersListButton.setIconSize(QSize(40, 40))
self.enteriesListButton.setIcon(QPixmap("./icons/icons8-car-80.png"))
self.enteriesListButton.setIconSize(QSize(40, 40))
self.settingsButton.setIcon(QPixmap("./icons/icons8-tools-80.png"))
self.settingsButton.setIconSize(QSize(40, 40))
self.plateTextView.setStyleSheet(
f"""border-image: url("{Path().absolute()}/Templates/template-base.png") 0 0 0 0 stretch stretch;""")
self.Worker1 = Worker1()
self.Worker1.plateDataUpdate.connect(self.on_plate_data_update)
self.Worker1.mainViewUpdate.connect(self.on_main_view_update)
self.Worker2 = Worker2()
self.Worker2.mainTableUpdate.connect(self.refresh_table)
self.Worker2.start()
configure_main_table_widget(self)
self.scene = QGraphicsScene()
self.gv.setScene(self.scene)
torch.cuda.empty_cache()
gc.collect()
def refresh_table(self, plateNum=''):
# Get all entries from the database with a limit of 10 and where the plate number is like the given plate number
plateNum = dbGetAllEntries(limit=10, whereLike=plateNum)
# Set the number of rows in the table widget to the length of the plate number list
self.tableWidget.setRowCount(len(plateNum))
# Iterate through the plate number list
for index, entry in enumerate(plateNum):
# Get the plate number in English
plateNum2 = join_elements(
convert_persian_to_english(split_string_language_specific(entry.getPlateNumber(display=True))))
# Get the plate status from the database
statusNum = db_get_plate_status(plateNum2)
# Set the status of the entry in the table widget
self.tableWidget.setItem(index, 0, QTableWidgetItem(entry.getStatus(statusNum=statusNum)))
# Set the plate number of the entry in the table widget
self.tableWidget.setItem(index, 1, QTableWidgetItem(entry.getPlateNumber(display=True)))
# Set the time of the entry in the table widget
self.tableWidget.setItem(index, 2, QTableWidgetItem(entry.getTime()))
# Set the date of the entry in the table widget
self.tableWidget.setItem(index, 3, QTableWidgetItem(entry.getDate()))
# Load the plate picture
Image = QImage()
Image.load(entry.getPlatePic())
# Create a QcroppedPlate from the Image
QcroppedPlate = QPixmap.fromImage(Image)
# Create an image label from the QcroppedPlate
item = create_image_label(QcroppedPlate)
# Set a mouse press event to on_label_double_click
item.mousePressEvent = functools.partial(on_label_double_click, source_object=item)
# Set the cell widget of the table widget to the image label
self.tableWidget.setCellWidget(index, 4, item)
# Set the row height of the table widget to 44
self.tableWidget.setRowHeight(index, 44)
# Create an info button
infoBtnItem = create_styled_button('info')
# Set a mouse press event to on_info_button_clicked
infoBtnItem.mousePressEvent = functools.partial(self.on_info_button_clicked, source_object=infoBtnItem)
# Set the cell widget of the table widget to the info button
self.tableWidget.setCellWidget(index, 5, infoBtnItem)
# Create an add button
addBtnItem = create_styled_button('add')
# Set a mouse press event to on_add_button_clicked
addBtnItem.mousePressEvent = functools.partial(self.on_add_button_clicked, source_object=addBtnItem)
# Set the cell widget of the table widget to the add button
self.tableWidget.setCellWidget(index, 6, addBtnItem)
# Disable the add button
addBtnItem.setEnabled(False)
# If the status is 2, enable the add button and disable the info button
if statusNum == 2:
addBtnItem.setEnabled(True)
infoBtnItem.setEnabled(False)
def on_info_button_clicked(self, event, source_object=None):
r = self.tableWidget.currentRow()
field1 = self.tableWidget.item(r, 1)
residentView(residnetPlate=field1.text()).exec()
def on_add_button_clicked(self, event, source_object=None):
r = self.tableWidget.currentRow()
field1 = self.tableWidget.item(r, 1)
residentAddWindow = residentsAddNewWindow(self, isNew=True,
residnetPlate=field1.text())
residentAddWindow.exec()
self.refresh_table()
def closeEvent(self, event):
"""### IT OVERRIDES closeEvent from PySide6"""
if self.residentsWindow is not None and self.enterieswindow is not None:
self.residentsWindow.close()
self.enterieswindow.close() # TODO if not openned any window will crash
event.accept()
def show_residents_list(self):
residentsMain = residentsWindow()
center_widget(residentsMain)
residentsMain.exec()
self.Worker2.start()
def show_entries_list(self):
enterieswindow = EnteriesWindow()
center_widget(enterieswindow)
enterieswindow.exec()
def on_main_view_update(self, mainViewImage):
qp = QPixmap.fromImage(mainViewImage)
self.scene.addPixmap(qp)
self.scene.setSceneRect(0, 0, 960, 540)
self.gv.fitInView(self.scene.sceneRect())
self.gv.setRenderHints(QPainter.Antialiasing)
def on_plate_data_update(self, cropped_plate: QImage, plate_text: str, char_conf_avg: float,
plate_conf_avg: float) -> None:
# Check if the plate text is 8 characters long and the character confidence is above 70
if len(plate_text) == 8 and char_conf_avg >= 70:
# Set the plate view to display the cropped plate
self.plate_view.setScaledContents(True)
self.plate_view.setPixmap(QPixmap.fromImage(cropped_plate))
# Convert the plate text to Persian and set the text for the plate number and plate text in Persian
plt_text_num = convert_english_to_persian(plate_text[:6], display=True)
plt_text_ir = convert_english_to_persian(plate_text[6:], display=True)
self.plate_text_num.setText(plt_text_num)
self.plate_text_ir.setText(plt_text_ir)
# Clean the plate text and get the status from the database
plate_text_clean = clean_license_plate_text(plate_text)
status = db_get_plate_status(plate_text_clean)
# Update the plate owner and permission
self.update_plate_owner(db_get_plate_owner_name(plate_text_clean))
self.update_plate_permission(status)
# Create data for send into services
external_service_data = {
'plate_number': plt_text_num + '-' + plt_text_ir,
'image': cropped_plate
}
# Add the plate text, character confidence, plate confidence, cropped plate, and status to the database
db_entries_time(plate_text_clean, char_conf_avg, plate_conf_avg, cropped_plate, status,
external_service_data=external_service_data)
self.Worker2.start()
def update_plate_owner(self, name):
if name:
self.plate_owner_name_view.setText(name)
else:
self.plate_owner_name_view.setText('')
def update_plate_permission(self, status):
r, g, b = get_status_color(status)
statusText = get_status_text(status)
self.plate_permission_view.setText(statusText)
self.plate_permission_view.setStyleSheet("background-color: rgb({}, {}, {});".format(r, g, b))
def start_webcam(self):
if not self.Worker1.isRunning():
self.Worker1.start()
else:
self.Worker1.unPause()
def stop_webcam(self):
self.Worker1.stop()
class Worker1(QThread):
"""
Worker thread that handles frame grabbing and processing in the background.
It is responsible for detecting plates and recognizing characters.
"""
mainViewUpdate = Signal(QImage)
plateDataUpdate = Signal(QImage, list, int, int)
TotalFramePass = 0
def __init__(self, parent=None):
super().__init__(parent)
def run(self):
self.prepare_capture()
while self.ThreadActive:
success, frame = self.Capture.read()
if success:
self.process_frame(frame)
self.manageFrameRate()
def prepare_capture(self):
self.prev_frame_time = 0
self.ThreadActive = True
"""
# you can change 0 in >>>cv2.VideoCapture(0)<<< (which is webcam) to params.video
# and it will read the config.ini >>> video = anpr_video.mp4
# you should add your file path instead of anpr_video.mp4
# if you want to use stream just replace your address in config.ini
>>> rtps = rtsp://172.17.0.1:8554/webCamStream
"""
self.Capture = cv2.VideoCapture(params.rtps) # 0 -> use for local webcam
self.adjust_video_position()
def adjust_video_position(self):
if params.source == 'video':
total = int(self.Capture.get(cv2.CAP_PROP_FRAME_COUNT))
self.TotalFramePass = 0 if self.TotalFramePass > total else self.TotalFramePass
self.Capture.set(1, self.TotalFramePass)
def process_frame(self, frame):
self.TotalFramePass += 1
resize = self.prepareImage(frame)
platesResult = modelPlate(resize).pandas().xyxy[0]
for _, plate in platesResult.iterrows():
plateConf = int(plate['confidence'] * 100)
if plateConf >= 90:
self.highlightPlate(resize, plate)
croppedPlate = self.cropPlate(resize, plate)
plateText, char_detected, charConfAvg = self.detectPlateChars(croppedPlate)
self.emitPlateData(croppedPlate, plateText, char_detected, charConfAvg, plateConf)
self.emitFrame(resize)
def prepareImage(self, frame):
resize = cv2.resize(frame, (960, 540))
effect = ImageOps.autocontrast(imgModel.to_img_pil(resize), cutoff=1)
return cv2.cvtColor(imgModel.to_img_opencv(effect), cv2.COLOR_BGR2RGB)
def highlightPlate(self, resize, plate):
cv2.rectangle(resize, (int(plate['xmin']) - 3, int(plate['ymin']) - 3),
(int(plate['xmax']) + 3, int(plate['ymax']) + 3),
color=(0, 0, 255), thickness=3)
def cropPlate(self, resize, plate):
return resize[int(plate['ymin']): int(plate['ymax']), int(plate['xmin']): int(plate['xmax'])]
def emitPlateData(self, croppedPlate, plateText, char_detected, charConfAvg, plateConf):
croppedPlate = cv2.resize(croppedPlate, (600, 132))
croppedPlateImage = QImage(croppedPlate.data, croppedPlate.shape[1], croppedPlate.shape[0],
QImage.Format_RGB888)
self.plateDataUpdate.emit(croppedPlateImage, plateText, charConfAvg, plateConf)
def manageFrameRate(self):
new_frame_time = time.time()
fps = 1 / (new_frame_time - self.prev_frame_time)
self.prev_frame_time = new_frame_time
self.currentFPS = fps # Save the current FPS for later drawing on the frame
def emitFrame(self, resize):
if hasattr(self, 'currentFPS'): # Check if currentFPS has been calculated
imgModel.draw_fps(resize, self.currentFPS) # Draw FPS on the frame
mainFrame = QImage(resize.data, resize.shape[1], resize.shape[0], QImage.Format_RGB888)
self.mainViewUpdate.emit(mainFrame)
def detectPlateChars(self, croppedPlate):
chars, confidences, char_detected = [], [], []
results = modelCharX(croppedPlate)
detections = results.pred[0]
detections = sorted(detections, key=lambda x: x[0]) # sort by x coordinate
for det in detections:
conf = det[4]
if conf > 0.5:
cls = det[5].item()
char = params.char_id_dict.get(str(int(cls)), '')
chars.append(char)
confidences.append(conf.item())
char_detected.append(det.tolist())
charConfAvg = round(statistics.mean(confidences) * 100) if confidences else 0
return ''.join(chars), char_detected, charConfAvg
def unPause(self):
self.ThreadActive = True
def stop(self):
self.ThreadActive = False
class Worker2(QThread):
mainTableUpdate = Signal()
def __init__(self, parent=None):
super().__init__(parent)
def run(self):
self.mainTableUpdate.emit()
time.sleep(.5)
def unPause(self):
self.ThreadActive = True
def stop(self):
self.ThreadActive = False
def get_platform():
platforms = {
'linux1': 'Linux',
'linux2': 'Linux',
'darwin': 'OS X',
'win32': 'Windows'
}
if sys.platform not in platforms:
return sys.platform
return platforms[sys.platform]
if __name__ == "__main__":
# QApplication.setAttribute(Qt.AA_UseSoftwareOpenGL) # OpenGL issue, Use before creating the QCoreApplication.
app = QtWidgets.QApplication(sys.argv)
app.setStyle('Windows')
window = MainWindow()
window.setWindowIcon(QIcon("./icons/65th_xs.png"))
window.setIconSize(QSize(16, 16))
center_widget(window)
window.show()
sys.exit(app.exec())