-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathexperiments.conf
56 lines (50 loc) · 1.43 KB
/
experiments.conf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# Chinese model configuration.
bert_base_chinese {
# Edit this
data_dir = ./data
# Computation limits.
max_top_antecedents = 50
max_training_sentences = 11
top_span_ratio = 0.4
max_num_speakers = 20
max_segment_len = 128
# Learning
bert_learning_rate = 1e-05
task_learning_rate = 0.0002
adam_eps = 1e-6
dropout_rate = 0.3
# Task choice
num_docs = 1810
num_epochs = 30
do_train = true
do_eval = true
do_test = true
do_one_example_test = true
eval_frequency = 5000
report_frequency = 10
# Model hyperparameters.
genres = ["bc", "bn", "mz", "nw", "tc", "wb"]
coref_depth = 2
ffnn_size = 2000
feature_size = 20
max_span_width = 30
use_metadata = true
use_features = true
use_segment_distance = true
model_heads = false
fine_grained = true
use_prior = true
single_example = true
# file path
train_path = ${data_dir}/train/train.chinese.128.jsonlines
eval_path = ${data_dir}/dev/dev.chinese.128.jsonlines
test_path = ${data_dir}/test/test.chinese.128.jsonlines
test_output_path = ${data_dir}/test_result.jsonlines
online_output_path = ${data_dir}/online_test_result.jsonlines
conll_eval_path = ${data_dir}/dev/dev.chinese.v4_gold_conll
conll_test_path= ${data_dir}/test/test.chinese.v4_gold_conll
model_save_path = ./trained_coref_model
pretrained_model = ./pretrain_model/
vocab_file = ./pretrain_model/vocab.txt
bert_config_file = ./pretrain_model/bert_config.json
}