-
Notifications
You must be signed in to change notification settings - Fork 63
/
x86-resource-stalls.asm
283 lines (226 loc) · 5.13 KB
/
x86-resource-stalls.asm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
BITS 64
default rel
%include "x86-helpers.asm"
nasm_util_assert_boilerplate
thunk_boilerplate
; depedent series of adds
define_bench rs_dep_add
xor eax, eax
.top:
times 128 add rax, rax
dec rdi
jnz .top
ret
; dependent series of muls, takes 3 per cycle
define_bench rs_dep_imul
xor eax, eax
.top:
times 128 imul rax, rax
dec rdi
jnz .top
ret
; 4 chains of indepedent adds
define_bench rs_dep_add4
xor eax, eax
.top:
%rep 128
add rax, rax
add rcx, rcx
add rdx, rdx
add r8 , r8
%endrep
dec rdi
jnz .top
ret
; split stores, should fill the SB since split stores take 2 cycles to commit
define_bench rs_split_stores
push rbp
mov rbp, rsp
and rsp, -64 ; align to 64-byte boundary
sub rsp, 128 ; we have a 128 byte byte buffer above rsp, aligned to 64 bytes
.top:
times 128 mov qword [rsp + 60], 0
dec rdi
jnz .top
mov rsp, rbp
pop rbp
ret
define_bench rs_dep_fsqrt
fldz
.top:
times 128 fsqrt
dec rdi
jnz .top
fstp st0
ret
; the following tests interleave fsqrt (latency 14) with varying numbers of nops
; in a 1:N ratio (N the number of nops per fqrt instruction.
; The idea is with a low nop:fsqrt ratio, the RS will be the limit, since the RS
; will fill with nops before exhausting another resource. With more nops, the ROB
; will be exhausted. Generally, if the RS has size R and the ROB size O, we expect
; the crossover point to be when N == O / R - 1;
;
; %1 number of filler ops
; %2 long latency op
; %3 name (suffix)
; %4 filler op asm
%macro define_rs_op_op 4-*
%xdefine ratio %1
define_bench rs_fsqrt_%3%1
push rbp
mov rbp, rsp
and rsp, -64 ; align to 64-byte boundary
sub rsp, 128 ; we have a 128 byte byte buffer above rsp, aligned to 64 bytes
fldz
vzeroupper
.top:
%rep 32
%2
%rep ratio
%rep (%0 - 3)
%4
%rotate 1
%endrep
%rotate 3
%endrep
%endrep
dec rdi
jnz .top
fstp st0
mov rsp, rbp
pop rbp
vzeroupper
ret
%endmacro
%assign i 0
%rep 20
define_rs_op_op i, fsqrt, nop , nop
define_rs_op_op i, fsqrt, add , {add eax, 1}
define_rs_op_op i, fsqrt, xorzero , {xor eax, eax}
define_rs_op_op i, fsqrt, load , {mov eax, [rsp]}
define_rs_op_op i, fsqrt, store , {mov [rsp], eax}
define_rs_op_op i, fsqrt, paddb , {paddb xmm0, xmm1}
define_rs_op_op i, fsqrt, vpaddb , {vpaddb xmm0, xmm1, xmm2}
define_rs_op_op i, fsqrt, add_padd, {vpaddb xmm0, xmm1, xmm2}, {add eax, 1} ; mixed scalar and vector adds
define_rs_op_op i, fsqrt, load_dep, {mov eax, [rsp]}, {add eax, 0}, {add eax, 0}, {add eax, 0}
%assign i (i + 1)
%endrep
%macro define_rs_load_op 3-*
%xdefine ratio %1
; like the fsqrt bench, but with 5-cycle loads as the limiting instruction
define_bench rs_load_%2%1
push rbp
mov rbp, rsp
and rsp, -64 ; align to 64-byte boundary
sub rsp, 128 ; we have a 128 byte byte buffer above rsp, aligned to 64 bytes
xor eax, eax
xor ecx, ecx
xor edx, edx
mov QWORD [rsp], 0
vzeroupper
.top:
%rep 32
mov rax, [rax + rsp]
%rep ratio
%rep (%0 - 2)
%3
%rotate 1
%endrep
%rotate 2
%endrep
%endrep
dec rdi
jnz .top
mov rsp, rbp
pop rbp
vzeroupper
ret
%endmacro
%assign i 0
%rep 20
define_rs_load_op i, nop , nop
define_rs_load_op i, add , {add edx, eax}, {add r8d, eax}, {add r9d, eax}
%assign i (i + 1)
%endrep
; here we test how many dependent loads can enter the RS at once
;
%macro define_rs_loadchain 2
%xdefine ratio %1
; like the fsqrt bench, but with 5-cycle loads as the limiting instruction
define_bench rs_loadchain%2
push rbp
mov rbp, rsp
and rsp, -64 ; align to 64-byte boundary
sub rsp, 128 ; we have a 128 byte byte buffer above rsp, aligned to 64 bytes
mov QWORD [rsp], 0
xor eax, eax
xor ecx, ecx
mov rdx, rsp
.top:
%rep 32
%rep %1
;imul rax, rax, 1
%endrep
%rep %2
;jc udd
;add eax, 0
;mov ecx, [rax + rdx]
;movsx rcx, eax
;lea rcx, [rax + rdx]
;cdq
;imul rax, rax, 1
popcnt rax, rax
;times 4 nop
%endrep
lfence
;mov rax, 0
%endrep
dec rdi
jnz .top
mov rsp, rbp
pop rbp
vzeroupper
ret
%endmacro
%assign i 0
%rep 120
define_rs_loadchain 20,i
%assign i (i + 1)
%endrep
; test store buffer capacity
; %1 number of vsqrtss latency builders
; %2 number of dependent store instructions
%macro define_rs_storebuf 2
; the basic idea is that we issue a bunch of dependent vsqrtss
; then N indepedent stores
; then a dependency breaking op vxorps so that the next sqrt chian
; is indepedent
; when N is equal to size of the store buffer + 1, allocation will
; stall and the sqrt chains won't be able to run in parallel and there
; will be a big jump (~43 cycles on SKL) in the iteration time
define_bench rs_storebuf%2
sub rsp, 8
vxorps xmm0, xmm0, xmm0
.top:
%rep 32
%rep %1
vsqrtss xmm0, xmm0, xmm0
%endrep
movq rax, xmm0
%rep %2
mov DWORD [rsp], 0
%endrep
vxorps xmm0, xmm0, xmm0
%endrep
dec rdi
jnz .top
add rsp, 8
ret
%endmacro
%assign i 0
%rep 80
define_rs_storebuf 10,i
%assign i (i + 1)
%endrep
mov ebx, [rsp]
mov [rsp - 0x8], ebx