-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcontinuousgalerkin.py
executable file
·86 lines (81 loc) · 2.06 KB
/
continuousgalerkin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
#!/usr/bin/python
# continuousgalerkin.py
#
# Created by Travis Johnson on 2010-05-31.
# Copyright (c) 2010 . All rights reserved.
from __future__ import division
from pylab import *
from numpy import *
from KoprivaMethods import *
## algo 57
def CGDerivativeMatrix(N):
x, w = LegendreGaussLobattoNodesAndWeights(N)
D = PolynomialDerivativeMatrix(x)
G = zeros((len(x),len(x)))
for j in range(len(x)):
for n in range(len(x)):
s = 0
for k in range(len(x)):
s += D[k,n]*D[k,j] * w[k]
G[j,n] = s/w[j]
return G,x
## algorithm 50
def GalerkinStepByRK3(tn, dt, phi, D, timeDeriv):
a=[0, -5/9, -153/128]
b =[0, 1/3, 3/4]
g =[1/3,15/16, 8/15]
for m in range(3):
t = tn + b[m]*dt
phidot = timeDeriv(phi,D)
G = zeros(phi.shape)
for j in range(len(phi)):
G[j] = a[m]*G[j] + phidot[j]
phi[j]=phi[j] + g[m]*dt*G[j]
return phi
## algo 57a
def CGDerivativeMatrixIntegrator(N, NT, Nout, T, initialValues):
def TDerivative(phi, D):
k = .95
df = -k**2*dot(D,phi)
return df
D,x =CGDerivativeMatrix(N)
D[0,:], D[-1,:] = 0, 0
#D[:,0], D[:,-1] = 0, 0
print x
dt = T/NT
tn = 0
phi = initialValues(x)
vals = linalg.eigvals(D)
print max(vals)
for n in range(NT+1):
phi = GalerkinStepByRK3(tn, dt, phi, D, TDerivative )
print phi[0], phi[-1]
tn = (n+1)*dt
if sum(isinf(phi))+sum(isnan(phi))>0 or max(phi)>100:
print("whoops, got inf(or big!) quitting!")
exit()
if n%(NT//10) ==0:
exact = sin(pi*(x+1))*exp(-1/.95**2*pi**2*tn)
diff = linalg.norm(exact - phi)
plot(x, phi,'o',x,exact), title('time = %f, norm = %f'%(tn, diff)),draw()
time.sleep(.5)
X=zeros((Nout,1))
for j in range(Nout):
X[j] = -1 + 2*j/Nout
wBary = BarycentricWeights(x)
T = PolynomialInterpolationMatrix(x,wBary,X)
phi_interp = InterpolateToNewPoints(T,phi)
return X,phi_interp
N=12
G,x = CGDerivativeMatrix(N)
G = G[1:,1:]
lambdamax = max(eigvals(G))
print lambdamax
t, dt = .1, 1e-3
print "dt =",dt
NT = 380
x, phi = CGDerivativeMatrixIntegrator(25, NT, 25, t, lambda x: sin(pi*(x+1)))
# print len(x)
# print len(phi)
plot(x,phi)
savefig('continuousgalerkin.png')