-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathreference_test.go
195 lines (182 loc) · 6.93 KB
/
reference_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
// Copyright 2022 Google LLC. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package testonly
import (
"fmt"
"math/bits"
"testing"
"github.com/google/go-cmp/cmp"
"github.com/transparency-dev/merkle"
"github.com/transparency-dev/merkle/rfc6962"
)
// The reference Merkle tree hashing and proof algorithms in this file directly
// implement the definitions from RFC 6962 [1]. We use this implementation only
// for testing correctness of other more flexible and performant algorithms,
// such as the in-memory Tree type and compact ranges.
//
// [1] https://datatracker.ietf.org/doc/html/rfc6962#section-2
// refRootHash returns the root hash of a Merkle tree with the given entries.
// This is a reference implementation for cross-checking.
func refRootHash(entries [][]byte, hasher merkle.LogHasher) []byte {
if len(entries) == 0 {
return hasher.EmptyRoot()
}
if len(entries) == 1 {
return hasher.HashLeaf(entries[0])
}
split := downToPowerOfTwo(uint64(len(entries)))
return hasher.HashChildren(
refRootHash(entries[:split], hasher),
refRootHash(entries[split:], hasher))
}
// refInclusionProof returns the inclusion proof for the given leaf index in a
// Merkle tree with the given entries. This is a reference implementation for
// cross-checking.
func refInclusionProof(entries [][]byte, index uint64, hasher merkle.LogHasher) [][]byte {
size := uint64(len(entries))
if size == 1 || index >= size {
return nil
}
split := downToPowerOfTwo(size)
if index < split {
return append(
refInclusionProof(entries[:split], index, hasher),
refRootHash(entries[split:], hasher))
}
return append(
refInclusionProof(entries[split:], index-split, hasher),
refRootHash(entries[:split], hasher))
}
// refConsistencyProof returns the consistency proof for the two tree sizes, in
// a Merkle tree with the given entries. This is a reference implementation for
// cross-checking.
func refConsistencyProof(entries [][]byte, size2, size1 uint64, hasher merkle.LogHasher, haveRoot1 bool) [][]byte {
if size1 == 0 || size1 > size2 {
return nil
}
// Consistency proof for two equal sizes is empty.
if size1 == size2 {
// Record the hash of this subtree if it's not the root for which the proof
// was originally requested (which happens when size1 is a power of 2).
if !haveRoot1 {
return [][]byte{refRootHash(entries[:size1], hasher)}
}
return nil
}
// At this point: 0 < size1 < size2.
split := downToPowerOfTwo(size2)
if size1 <= split {
// Root of size1 is in the left subtree of size2. Prove that the left
// subtrees are consistent, and record the hash of the right subtree (only
// present in size2).
return append(
refConsistencyProof(entries[:split], split, size1, hasher, haveRoot1),
refRootHash(entries[split:], hasher))
}
// Root of size1 is at the same level as size2 root. Prove that the right
// subtrees are consistent. The right subtree doesn't contain the root of
// size1, so set haveRoot1 = false. Record the hash of the left subtree
// (equal in both trees).
return append(
refConsistencyProof(entries[split:], size2-split, size1-split, hasher, false),
refRootHash(entries[:split], hasher))
}
// downToPowerOfTwo returns the largest power of two smaller than x.
func downToPowerOfTwo(x uint64) uint64 {
if x < 2 {
panic("downToPowerOfTwo requires value >= 2")
}
return uint64(1) << (bits.Len64(x-1) - 1)
}
func TestDownToPowerOfTwo(t *testing.T) {
for _, inOut := range [][2]uint64{
{2, 1}, {7, 4}, {8, 4}, {63, 32}, {28937, 16384},
} {
if got, want := downToPowerOfTwo(inOut[0]), inOut[1]; got != want {
t.Errorf("downToPowerOfTwo(%d): got %d, want %d", inOut[0], got, want)
}
}
}
func TestRefInclusionProof(t *testing.T) {
for _, tc := range []struct {
index uint64
size uint64
want [][]byte
}{
{index: 0, size: 1, want: nil},
{index: 0, size: 2, want: [][]byte{
hd("96a296d224f285c67bee93c30f8a309157f0daa35dc5b87e410b78630a09cfc7"),
}},
{index: 1, size: 2, want: [][]byte{
hd("6e340b9cffb37a989ca544e6bb780a2c78901d3fb33738768511a30617afa01d"),
}},
{index: 2, size: 3, want: [][]byte{
hd("fac54203e7cc696cf0dfcb42c92a1d9dbaf70ad9e621f4bd8d98662f00e3c125"),
}},
{index: 1, size: 5, want: [][]byte{
hd("6e340b9cffb37a989ca544e6bb780a2c78901d3fb33738768511a30617afa01d"),
hd("5f083f0a1a33ca076a95279832580db3e0ef4584bdff1f54c8a360f50de3031e"),
hd("bc1a0643b12e4d2d7c77918f44e0f4f79a838b6cf9ec5b5c283e1f4d88599e6b"),
}},
{index: 0, size: 8, want: [][]byte{
hd("96a296d224f285c67bee93c30f8a309157f0daa35dc5b87e410b78630a09cfc7"),
hd("5f083f0a1a33ca076a95279832580db3e0ef4584bdff1f54c8a360f50de3031e"),
hd("6b47aaf29ee3c2af9af889bc1fb9254dabd31177f16232dd6aab035ca39bf6e4"),
}},
{index: 5, size: 8, want: [][]byte{
hd("bc1a0643b12e4d2d7c77918f44e0f4f79a838b6cf9ec5b5c283e1f4d88599e6b"),
hd("ca854ea128ed050b41b35ffc1b87b8eb2bde461e9e3b5596ece6b9d5975a0ae0"),
hd("d37ee418976dd95753c1c73862b9398fa2a2cf9b4ff0fdfe8b30cd95209614b7"),
}},
} {
t.Run(fmt.Sprintf("%d:%d", tc.index, tc.size), func(t *testing.T) {
entries := LeafInputs()
got := refInclusionProof(entries[:tc.size], tc.index, rfc6962.DefaultHasher)
if diff := cmp.Diff(got, tc.want); diff != "" {
t.Errorf("refInclusionProof: diff (-got +want)\n%s", diff)
}
})
}
}
func TestRefConsistencyProof(t *testing.T) {
for _, tc := range []struct {
size1 uint64
size2 uint64
want [][]byte
}{
{size1: 1, size2: 1, want: nil},
{size1: 1, size2: 8, want: [][]byte{
hd("96a296d224f285c67bee93c30f8a309157f0daa35dc5b87e410b78630a09cfc7"),
hd("5f083f0a1a33ca076a95279832580db3e0ef4584bdff1f54c8a360f50de3031e"),
hd("6b47aaf29ee3c2af9af889bc1fb9254dabd31177f16232dd6aab035ca39bf6e4"),
}},
{size1: 2, size2: 5, want: [][]byte{
hd("5f083f0a1a33ca076a95279832580db3e0ef4584bdff1f54c8a360f50de3031e"),
hd("bc1a0643b12e4d2d7c77918f44e0f4f79a838b6cf9ec5b5c283e1f4d88599e6b"),
}},
{size1: 6, size2: 8, want: [][]byte{
hd("0ebc5d3437fbe2db158b9f126a1d118e308181031d0a949f8dededebc558ef6a"),
hd("ca854ea128ed050b41b35ffc1b87b8eb2bde461e9e3b5596ece6b9d5975a0ae0"),
hd("d37ee418976dd95753c1c73862b9398fa2a2cf9b4ff0fdfe8b30cd95209614b7"),
}},
} {
t.Run(fmt.Sprintf("%d:%d", tc.size1, tc.size2), func(t *testing.T) {
entries := LeafInputs()
got := refConsistencyProof(entries[:tc.size2], tc.size2, tc.size1, rfc6962.DefaultHasher, true)
if diff := cmp.Diff(got, tc.want); diff != "" {
t.Errorf("refConsistencyProof: diff (-got +want)\n%s", diff)
}
})
}
}