-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbert_text_classification.py
499 lines (421 loc) · 22.4 KB
/
bert_text_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
#! /usr/bin/env python
#
# Text categorized based on BERT model. This allows for multiclass categorization. The
# input is a tabbed delimited file of the format:
# category<TAB>token1<DELIM>token2<DELIM>...tokenN
# where DELIM is either whitespace and/or punctuation (e.g., ' ' or '. ' or ' $').
# The tokens are alphanumeric as well as including dashes and underscores.
#
# Notes:
# - This is based on following online article:
# https://analyticsindiamag.com/step-by-step-guide-to-implement-multi-class-classification-with-bert-tensorflow
# - Godawful code organization (e.g., double embedded functions).
# - Default text categories:
# Politics: 0
# Technology: 1
# Entertainment: 2
# Business: 3
#
# - Data Preprocessing
#
# The BERT model accepts only a specific type of input and the datasets are usually structured to have have the following four features:
# guid : A unique id that represents an observation.
# text_a : The text we need to classify into given categories
# text_b: It is used when we're training a model to understand the relationship between sentences and it does not apply for classification problems.
# label: It consists of the labels or classes or categories that a given text belongs to.
#
# In our dataset we have text_a and label. The code will create objects for each of the above mentioned features for all the records in our dataset using the InputExample class provided in the BERT library.
#
# - To cache the tensorflow hub version of the BERT data, uses following steps,
# based on https://medium.com/@xianbao.qian/how-to-run-tf-hub-locally-without-internet-connection-4506b850a915:
# local_hub_dir = /tmp/tf-hub
# mkdir local_hub_dir
# os.environ["TFHUB_CACHE_DIR"] = "/tmp/tf-hub"
# cache_subdir = hashlib.sha1(BERT_MODEL_HUB.encode("utf8")).hexdigest()
# tf_hub_url = BERT_MODEL_HUB.replace("https://tfhub.dev/", "https://storage.googleapis.com/tfhub-modules/")
# curl tf_hub_url /tmp/
# cd local_hub_dir
# tar xvfz /tmp/1.tar.gz
# move * cache_subdir
# For hub instance "https://tfhub.dev/google/bert_uncased_L-12_H-768_A-12/1",
# this downloads https://storage.googleapis.com/tfhub-modules/bert_uncased_L-12_H-768_A-12/1.tr.gz" and places the tar contents in /tmp/
#
#--------------------------------------------------------------------------------
# TODO:
# - Determine the depencies between the versions of TensorFlow and BERT. This
# doesn't work with TensorFlow 2.0 and BERT from 2018.
#
"""Run text categorization over input file (or Predict the News Category Hackathon)"""
## TODO: drop re import if not needed
from datetime import datetime
import os
import pandas as pd
import re
## OLD: from google.colab import drive
import tensorflow as tf
import tensorflow_hub as hub
from sklearn.model_selection import train_test_split
#Importing BERT modules
import bert
from bert import run_classifier
from bert import optimization
from bert import tokenization
from main import Main
import debug
import system
import glue_helpers as gh
# Get training data
# TODO: replace with file specified on input
## OLD: drive.mount("/GD")
# Show TensorFlow info
# note: 1.15.0 and 0.7.0 for blog example
print("tensorflow version : ", tf.__version__)
print("tensorflow_hub version : ", hub.__version__)
# Set the output directory for saving model file
## OUTPUT_DIR = '/GD/My Drive/Colab Notebooks/BERT/bert_news_category'
USER = system.getenv_text("USER", "user")
BASE_DIR = system.getenv_text("BASE_DIR", ".")
TRAINING_FILE = "Data_Train.xlsx"
TESTING_FILE = "Data_Test.xlsx"
TYPICAL_INPUT_DIR = system.form_path(USER, "data", "hackathon-news-prediction")
DEFAULT_INPUT_DIR = "." if system.file_exists(TRAINING_FILE) else TYPICAL_INPUT_DIR
INPUT_DIR = system.getenv_text("INPUT_DIR", DEFAULT_INPUT_DIR)
TRAINING_PATH = system.form_path(INPUT_DIR, TRAINING_FILE)
TESTING_PATH = system.form_path(INPUT_DIR, TESTING_FILE)
OUTPUT_DIR = system.getenv_text("OUTPUT_DIR",
system.form_path(INPUT_DIR, "output"))
SHOW_PLOTS = system.getenv_bool("SHOW_PLOTS", False)
TFHUB_CACHE_DIR = system.getenv_text("TFHUB_CACHE_DIR")
if TFHUB_CACHE_DIR:
debug.trace_fmt(3, "Using local TensorFlow Hub cache: {c}", c=TFHUB_CACHE_DIR)
## #@markdown Whether or not to clear/delete the directory and create a new oneu
## DO_DELETE = False #@param {type:"boolean"}
DO_DELETE = system.getenv_bool("DO_DELETE", False)
# Do sanity check on input files
debug.assertion(system.non_empty_file(TRAINING_PATH))
debug.assertion(system.non_empty_file(TESTING_PATH))
# Delete previous run if desired. The (re-)create the output directory if needed.
debug.assertion(system.is_directory(INPUT_DIR))
if DO_DELETE:
try:
## tf.gfile.DeleteRecursively(OUTPUT_DIR)
gh.issue("/bin/rm --verbose --recursive {od}", od=OUTPUT_DIR)
except:
## pass
system.print_stderr("Problem deleting dir: {od}", od=OUTPUT_DIR)
if not system.is_directory(OUTPUT_DIR):
system.create_directory(OUTPUT_DIR)
## tf.gfile.MakeDirs(OUTPUT_DIR)
print('***** Model output directory: {} *****'.format(OUTPUT_DIR))
## TODO: Constants for switches omitting leading dashes (e.g., DEBUG_MODE = "debug-mode")
## Note: Run following in Emacs to interactively replace TODO_ARGn with option label
## M-: (query-replace-regexp "todo\\([-_]\\)argn" "arg\\1name")
## where M-: is the emacs keystroke short-cut for eval-expression.
## TODO_ARG1 = False
## TODO_ARG2 = "TODO-arg2"
## TODO_FILENAME = "TODO-filename"
class Script(Main):
"""Input processing class"""
# TODO: -or-: """Adhoc script class (e.g., no I/O loop, just run calls)"""
BERT_MODEL_HUB = None
# This is a path to an uncased (all lowercase) version of BERT
BERT_MODEL_HUB = "https://tfhub.dev/google/bert_uncased_L-12_H-768_A-12/1"
MAX_SEQ_LENGTH = 128 # Sequences have at most 128 tokens.
# These hyperparameters are copied from this colab notebook (https://colab.sandbox.google.com/github/tensorflow/tpu/blob/master/tools/colab/bert_finetuning_with_cloud_tpus.ipynb)
BATCH_SIZE = 32
LEARNING_RATE = 2e-5
NUM_TRAIN_EPOCHS = 3.0
# Warmup is a period of time where the learning rate is small and gradually increases--usually helps training.
WARMUP_PROPORTION = 0.1
# Model configs
SAVE_CHECKPOINTS_STEPS = 300
SAVE_SUMMARY_STEPS = 100
DATA_COLUMN = 'STORY'
LABEL_COLUMN = 'SECTION'
# The list containing all the classes (train['SECTION'].unique())
LABEL_LIST = [0, 1, 2, 3]
# TODO: add class constructor
## def __init__(self, *args, **kwargs):
## debug.trace_fmtd(5, "Script.__init__({a}): keywords={kw}; self={s}",
## a=",".join(args), kw=kwargs, s=self)
## super(Script, self).__init__(*args, **kwargs)
def setup(self):
"""Check results of command line processing"""
debug.trace_fmtd(5, "Script.setup(): self={s}", s=self)
## TODO:
## self.TODO_arg1 = self.get_parsed_option(TODO_ARG1, self.TODO_arg1)
## self.TODO_arg2 = self.get_parsed_option(TODO_ARG2, self.TODO_arg2)
# TODO: self.TODO_filename = self.get_parsed_argument(TODO_FILENAME)
debug.trace_object(5, self, label="Script instance")
def create_tokenizer_from_hub_module(self):
"""Get the vocab file and casing info from the Hub module."""
with tf.Graph().as_default():
bert_module = hub.Module(self.BERT_MODEL_HUB)
tokenization_info = bert_module(signature="tokenization_info", as_dict=True)
with tf.Session() as sess:
vocab_file, do_lower_case = sess.run(
[tokenization_info["vocab_file"],
tokenization_info["do_lower_case"]])
return bert.tokenization.FullTokenizer(
vocab_file=vocab_file, do_lower_case=do_lower_case)
def create_model(self, is_predicting, input_ids, input_mask, segment_ids,
labels, num_labels):
"""Load the BERT model for fine-tuning."""
bert_module = hub.Module(
self.BERT_MODEL_HUB,
trainable=True)
bert_inputs = dict(
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids)
bert_outputs = bert_module(
inputs=bert_inputs,
signature="tokens",
as_dict=True)
# Use "pooled_output" for classification tasks on an entire sentence.
# Use "sequence_outputs" for token-level output.
output_layer = bert_outputs["pooled_output"]
hidden_size = output_layer.shape[-1].value
# Create our own layer to tune for politeness data.
# TODO: Make this optional (probably specific to Hackathon corpus genre)
output_weights = tf.get_variable(
"output_weights", [num_labels, hidden_size],
initializer=tf.truncated_normal_initializer(stddev=0.02))
output_bias = tf.get_variable(
"output_bias", [num_labels], initializer=tf.zeros_initializer())
with tf.variable_scope("loss"):
# Dropout helps prevent overfitting
output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
logits = tf.matmul(output_layer, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
log_probs = tf.nn.log_softmax(logits, axis=-1)
# Convert labels into one-hot encoding
one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)
predicted_labels = tf.squeeze(tf.argmax(log_probs, axis=-1, output_type=tf.int32))
# If predicting, return predicted labels and the probabiltiies.
if is_predicting:
return (predicted_labels, log_probs)
# If in train/eval, compute loss between predicted and actual label
# Note: returns loss, predicted labels, and the log of the label probs.
per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
loss = tf.reduce_mean(per_example_loss)
return (loss, predicted_labels, log_probs)
# model_fn_builder actually creates our model function
# using the passed parameters for num_labels, learning_rate, etc.
def model_fn_builder(self, num_labels, learning_rate, num_train_steps,
num_warmup_steps):
"""Returns `model_fn` closure for TPUEstimator."""
def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
"""The `model_fn` for TPUEstimator."""
input_ids = features["input_ids"]
input_mask = features["input_mask"]
segment_ids = features["segment_ids"]
label_ids = features["label_ids"]
is_predicting = (mode == tf.estimator.ModeKeys.PREDICT)
# TRAIN and EVAL
if not is_predicting:
(loss, predicted_labels, log_probs) = self.create_model(
is_predicting, input_ids, input_mask, segment_ids, label_ids, num_labels)
train_op = bert.optimization.create_optimizer(
loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu=False)
# Calculate evaluation metrics.
def metric_fn(label_ids, predicted_labels):
accuracy = tf.metrics.accuracy(label_ids, predicted_labels)
true_pos = tf.metrics.true_positives(label_ids,
predicted_labels)
true_neg = tf.metrics.true_negatives(label_ids,
predicted_labels)
false_pos = tf.metrics.false_positives(label_ids,
predicted_labels)
false_neg = tf.metrics.false_negatives(label_ids,
predicted_labels)
return {
"eval_accuracy": accuracy,
"true_positives": true_pos,
"true_negatives": true_neg,
"false_positives": false_pos,
"false_negatives": false_neg
}
eval_metrics = metric_fn(label_ids, predicted_labels)
if mode == tf.estimator.ModeKeys.TRAIN:
return tf.estimator.EstimatorSpec(mode=mode,
loss=loss,
train_op=train_op)
else:
return tf.estimator.EstimatorSpec(mode=mode,
loss=loss,
eval_metric_ops=eval_metrics)
else:
(predicted_labels, log_probs) = self.create_model(
is_predicting, input_ids, input_mask, segment_ids, label_ids, num_labels)
predictions = {
'probabilities': log_probs,
'labels': predicted_labels
}
return tf.estimator.EstimatorSpec(mode, predictions=predictions)
# Return the actual model function in the closure
return model_fn
def getPrediction(self, in_sentences):
"""A method to get predictions"""
#A list to map the actual labels to the predictions
labels = ["Politics", "Technology", "Entertainment", "Business"]
#Transforming the test data into BERT accepted form
input_examples = [run_classifier.InputExample(guid="", text_a=x, text_b=None, label=0) for x in in_sentences]
#Creating input features for Test data
input_features = run_classifier.convert_examples_to_features(input_examples, self.LABEL_LIST, self.MAX_SEQ_LENGTH, tokenizer)
#Predicting the classes
predict_input_fn = run_classifier.input_fn_builder(features=input_features, seq_length=self.MAX_SEQ_LENGTH, is_training=False, drop_remainder=False)
predictions = estimator.predict(predict_input_fn)
return [(sentence, prediction['probabilities'], prediction['labels'], labels[prediction['labels']]) for sentence, prediction in zip(in_sentences, predictions)]
def run_main_step(self):
"""Main processing step"""
debug.trace_fmtd(5, "Script.run_main_step(): self={s}", s=self)
# Loading The Data
## OLD: We will now load the data from a Google Drive directory and will also split the training set in to training and validation sets.
## train = pd.read_excel("/GD/My Drive/Colab Notebooks/News_category/Datasets/Data_Train.xlsx")
## test = pd.read_excel("/GD/My Drive/Colab Notebooks/News_category/Datasets/Data_Test.xlsx")
train = pd.read_excel(system.form_path(INPUT_DIR, TRAINING_PATH))
test = pd.read_excel(system.form_path(INPUT_DIR, TESTING_PATH))
train, val = train_test_split(train, test_size=0.2, random_state=100)
#Training set sample
debug.trace_fmt(4, "Train sample:\n{s}", s=train.head(5))
debug.trace_fmt(4, "Test sample:\n{s}", s=test.head(5))
print("Training Set Shape :", train.shape)
print("Validation Set Shape :", val.shape)
print("Test Set Shape :", test.shape)
# Features in the dataset
# ex: Index(['STORY', 'SECTION'], dtype='object')
debug.trace_fmt(4, "Train columns: {c}", c=train.columns)
# unique classes
# ex; array([3, 1, 2, 0])
debug.trace_fmt(4, "Unique training classes: {c}",
c=train['SECTION'].unique())
# Distribution of classes
# ex: <matplotlib.axes._subplots.AxesSubplot at 0x7ff5921f9ba8>
if SHOW_PLOTS:
train['SECTION'].value_counts().plot(kind='bar')
# Compute train and warmup steps from batch size
num_train_steps = int(len(train_features) / BATCH_SIZE * NUM_TRAIN_EPOCHS)
num_warmup_steps = int(num_train_steps * WARMUP_PROPORTION)
# Specify output directory and number of checkpoint steps to save
run_config = tf.estimator.RunConfig(
model_dir=OUTPUT_DIR,
save_summary_steps=SAVE_SUMMARY_STEPS,
save_checkpoints_steps=SAVE_CHECKPOINTS_STEPS)
# Specify output directory and number of checkpoint steps to save
run_config = tf.estimator.RunConfig(
model_dir=OUTPUT_DIR,
save_summary_steps=SAVE_SUMMARY_STEPS,
save_checkpoints_steps=SAVE_CHECKPOINTS_STEPS)
#Initializing the model and the estimator
model_fn = self.model_fn_builder(
num_labels=len(self.LABEL_LIST),
learning_rate=LEARNING_RATE,
num_train_steps=num_train_steps,
num_warmup_steps=num_warmup_steps)
estimator = tf.estimator.Estimator(
model_fn=model_fn,
config=run_config,
params={"batch_size": BATCH_SIZE})
# Read in training data
# See 'Data preprocessing' notes in the header comments
train_InputExamples = train.apply(lambda x:
bert.run_classifier.InputExample(
guid=None,
text_a=x[DATA_COLUMN],
text_b=None,
label=x[LABEL_COLUMN]),
axis=1)
val_InputExamples = val.apply(lambda x:
bert.run_classifier.InputExample(
guid=None,
text_a=x[DATA_COLUMN],
text_b=None,
label=x[LABEL_COLUMN]),
axis=1)
debug.trace_object(5, train_InputExamples, "train_InputExamples")
debug.trace(4, "Row 0 - guid of training set: {r}", r=train_InputExamples.iloc[0].guid)
debug.trace(4, "__________\nRow 0 - text_a of training set {t}: ", r=train_InputExamples.iloc[0].text_a)
debug.trace(4, "__________\nRow 0 - text_b of training set: {t}", t=train_InputExamples.iloc[0].text_b)
debug.trace(4, "__________\nRow 0 - label of training set: {l}", l=train_InputExamples.iloc[0].label)
# Convert to BERT format
tokenizer = self.create_tokenizer_from_hub_module()
debug.trace_fmt(4, "row 0 tokenized: {t}", t=tokenizer.tokenize(train_InputExamples.iloc[0].text_a))
# Convert train and validation features to InputFeatures that BERT understands.
train_features = bert.run_classifier.convert_examples_to_features(
train_InputExamples, self.LABEL_LIST, self.MAX_SEQ_LENGTH, tokenizer)
val_features = bert.run_classifier.convert_examples_to_features(
val_InputExamples, self.LABEL_LIST, self.MAX_SEQ_LENGTH, tokenizer)
# Example on first observation in the training set
debug.trace_fmt(4, "Sentence: {s}", s=train_InputExamples.iloc[0].text_a)
debug.trace_fmt(4, "-"*30)
debug.trace_fmt(4, "Tokens: {t}", t=tokenizer.tokenize(train_InputExamples.iloc[0].text_a))
debug.trace_fmt(4, "-"*30)
debug.trace_fmt(4, "Input IDs: {i}", l=train_features[0].input_ids)
debug.trace_fmt(4, "-"*30)
debug.trace_fmt(4, "Input Masks: {m}", m-train_features[0].input_mask)
debug.trace_fmt(4, "-"*30)
debug.trace_fmt(4, "Segment IDs: {i}", i=train_features[0].segment_ids)
# Initializing the model and the estimator
model_fn = self.model_fn_builder(
num_labels=len(self.LABEL_LIST),
learning_rate=LEARNING_RATE,
num_train_steps=num_train_steps,
num_warmup_steps=num_warmup_steps)
estimator = tf.estimator.Estimator(
model_fn=model_fn,
config=run_config,
params={"batch_size": BATCH_SIZE})
# Create an input function for training. drop_remainder=True for using TPUs.
train_input_fn = bert.run_classifier.input_fn_builder(
features=train_features,
seq_length=self.MAX_SEQ_LENGTH,
is_training=True,
drop_remainder=False)
# Create an input function for validating. drop_remainder=True for using TPUs.
val_input_fn = run_classifier.input_fn_builder(
features=val_features,
seq_length=self.MAX_SEQ_LENGTH,
is_training=False,
drop_remainder=False)
# Evaluating the model with Validation set
estimator.evaluate(input_fn=val_input_fn, steps=None)
# Evaluate over test set
pred_sentences = list(test['STORY'])
predictions = getPrediction(pred_sentences)
debug.race_fmt(4, predictions[0])
enc_labels = []
act_labels = []
for i in range(len(predictions)):
enc_labels.append(predictions[i][2])
act_labels.append(predictions[i][3])
## OLD: pd.DataFrame(enc_labels, columns=['SECTION']).to_excel('/GD/My Drive/Colab Notebooks/BERT/submission_bert.xlsx', index=False)
data_file = system.form_path(INPUT_DIR, "submission_bert.xlsx")
pd.DataFrame(enc_labels, columns=['SECTION']).to_excel(data_file,
index=False)
# Classifying random sentences
tests = getPrediction(
['Mr.Modi is the Indian Prime Minister',
'Gaming machines are powered by efficient micro processores and GPUs',
'That HBO TV series is really good',
'A trillion dollar economy '
])
debug.trace_object(4, tests, "tests")
return
## TODO: def wrap_up(self):
## # ...
## TODO: def clean_up(self):
## # ...
## super(Script, self).clean_up()
#-------------------------------------------------------------------------------
if __name__ == '__main__':
debug.trace_current_context(level=debug.QUITE_DETAILED)
app = Script(
description=__doc__,
skip_input=False,
manual_input=True,
## boolean_options=[TODO_ARG1],
# TODO: positional_options=[TODO_FILENAME],
## TODO: text_options=[(TODO_ARG2, "TODO-desc")]
)
app.run()