-
Notifications
You must be signed in to change notification settings - Fork 69
/
Copy pathkalman_tracking_live.py
396 lines (284 loc) · 12.2 KB
/
kalman_tracking_live.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
#####################################################################
# Example : kalman filtering based cam shift object track processing
# from a video file specified on the command line (e.g. python FILE.py
# video_file) or from an attached web camera
# N.B. u se mouse to select region
# Author : Toby Breckon, [email protected]
# Copyright (c) 2016 Toby Breckon
# Durham University, UK
# License : LGPL - http://www.gnu.org/licenses/lgpl.html
# based in part on code from: Learning OpenCV 3 Computer Vision with Python
# Chapter 8 code samples, Minichino / Howse, Packt Publishing.
# and also code from:
# https://docs.opencv.org/3.3.1/dc/df6/tutorial_py_histogram_backprojection.html
#####################################################################
import cv2
import argparse
import sys
import math
import numpy as np
#####################################################################
keep_processing = True
selection_in_progress = False # support interactive region selection
fullscreen = False # run in fullscreen mode
# parse command line arguments for camera ID or video file
parser = argparse.ArgumentParser(
description='Perform ' +
sys.argv[0] +
' example operation on incoming camera/video image')
parser.add_argument(
"-c",
"--camera_to_use",
type=int,
help="specify camera to use",
default=0)
parser.add_argument(
"-r",
"--rescale",
type=float,
help="rescale image by this factor",
default=1.0)
parser.add_argument(
'video_file',
metavar='video_file',
type=str,
nargs='?',
help='specify optional video file')
args = parser.parse_args()
#####################################################################
# select a region using the mouse
boxes = []
current_mouse_position = np.ones(2, dtype=np.int32)
def on_mouse(event, x, y, flags, params):
global boxes
global selection_in_progress
current_mouse_position[0] = x
current_mouse_position[1] = y
if event == cv2.EVENT_LBUTTONDOWN:
boxes = []
# print 'Start Mouse Position: '+str(x)+', '+str(y)
sbox = [x, y]
selection_in_progress = True
boxes.append(sbox)
elif event == cv2.EVENT_LBUTTONUP:
# print 'End Mouse Position: '+str(x)+', '+str(y)
ebox = [x, y]
selection_in_progress = False
boxes.append(ebox)
#####################################################################
# return centre of a set of points representing a rectangle
def center(points):
x = np.float32(
(points[0][0] +
points[1][0] +
points[2][0] +
points[3][0]) /
4.0)
y = np.float32(
(points[0][1] +
points[1][1] +
points[2][1] +
points[3][1]) /
4.0)
return np.array([np.float32(x), np.float32(y)], np.float32)
#####################################################################
# this function is called as a call-back everytime the trackbar is moved
# (here we just do nothing)
def nothing(x):
pass
#####################################################################
# define video capture object
try:
# to use a non-buffered camera stream (via a separate thread)
if not (args.video_file):
import camera_stream
cap = camera_stream.CameraVideoStream()
else:
cap = cv2.VideoCapture() # not needed for video files
except BaseException:
# if not then just use OpenCV default
print("INFO: camera_stream class not found - camera input may be buffered")
cap = cv2.VideoCapture()
# define display window name
window_name = "Kalman Object Tracking" # window name
window_name2 = "Hue histogram back projection" # window name
window_nameSelection = "initial selected region"
# init kalman filter object
kalman = cv2.KalmanFilter(4, 2)
kalman.measurementMatrix = np.array([[1, 0, 0, 0],
[0, 1, 0, 0]], np.float32)
kalman.transitionMatrix = np.array([[1, 0, 1, 0],
[0, 1, 0, 1],
[0, 0, 1, 0],
[0, 0, 0, 1]], np.float32)
kalman.processNoiseCov = np.array([[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]], np.float32) * 0.03
measurement = np.array((2, 1), np.float32)
prediction = np.zeros((2, 1), np.float32)
print("\nObservation in image: BLUE")
print("Prediction from Kalman: GREEN\n")
# if command line arguments are provided try to read video_name
# otherwise default to capture from attached H/W camera
if (((args.video_file) and (cap.open(str(args.video_file))))
or (cap.open(args.camera_to_use))):
# create window by name (note flags for resizable or not)
cv2.namedWindow(window_name, cv2.WINDOW_NORMAL)
cv2.namedWindow(window_name2, cv2.WINDOW_NORMAL)
cv2.namedWindow(window_nameSelection, cv2.WINDOW_NORMAL)
# set sliders for HSV selection thresholds
s_lower = 60
cv2.createTrackbar("s lower", window_name2, s_lower, 255, nothing)
s_upper = 255
cv2.createTrackbar("s upper", window_name2, s_upper, 255, nothing)
v_lower = 32
cv2.createTrackbar("v lower", window_name2, v_lower, 255, nothing)
v_upper = 255
cv2.createTrackbar("v upper", window_name2, v_upper, 255, nothing)
# set a mouse callback
cv2.setMouseCallback(window_name, on_mouse, 0)
cropped = False
# Setup the termination criteria for search, either 10 iteration or
# move by at least 1 pixel pos. difference
term_crit = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1)
while (keep_processing):
# if video file successfully open then read frame from video
if (cap.isOpened):
ret, frame = cap.read()
# rescale if specified
if (args.rescale != 1.0):
frame = cv2.resize(
frame, (0, 0), fx=args.rescale, fy=args.rescale)
# start a timer (to see how long processing and display takes)
start_t = cv2.getTickCount()
# get parameters from track bars
s_lower = cv2.getTrackbarPos("s lower", window_name2)
s_upper = cv2.getTrackbarPos("s upper", window_name2)
v_lower = cv2.getTrackbarPos("v lower", window_name2)
v_upper = cv2.getTrackbarPos("v upper", window_name2)
# select region using the mouse and display it
if (len(boxes) > 1) and (boxes[0][1] < boxes[1][1]) and (
boxes[0][0] < boxes[1][0]):
crop = frame[boxes[0][1]:boxes[1][1],
boxes[0][0]:boxes[1][0]].copy()
h, w, c = crop.shape # size of template
if (h > 0) and (w > 0):
cropped = True
# convert region to HSV
hsv_crop = cv2.cvtColor(crop, cv2.COLOR_BGR2HSV)
# select all Hue (0-> 180) and Sat. values but eliminate values
# with very low saturation or value (due to lack of useful
# colour information)
mask = cv2.inRange(
hsv_crop, np.array(
(0., float(s_lower), float(v_lower))), np.array(
(180., float(s_upper), float(v_upper))))
# construct a histogram of hue and saturation values and
# normalize it
crop_hist = cv2.calcHist(
[hsv_crop], [
0, 1], mask, [
180, 255], [
0, 180, 0, 255])
cv2.normalize(crop_hist, crop_hist, 0, 255, cv2.NORM_MINMAX)
# set intial position of object
track_window = (
boxes[0][0],
boxes[0][1],
boxes[1][0] -
boxes[0][0],
boxes[1][1] -
boxes[0][1])
cv2.imshow(window_nameSelection, crop)
# reset list of boxes
boxes = []
# interactive display of selection box
if (selection_in_progress):
top_left = (boxes[0][0], boxes[0][1])
bottom_right = (
current_mouse_position[0],
current_mouse_position[1])
cv2.rectangle(frame, top_left, bottom_right, (0, 255, 0), 2)
# if we have a selected region
if (cropped):
# convert incoming image to HSV
img_hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# back projection of histogram based on Hue and Saturation only
img_bproject = cv2.calcBackProject(
[img_hsv], [
0, 1], crop_hist, [
0, 180, 0, 255], 1)
cv2.imshow(window_name2, img_bproject)
# apply camshift to predict new location (observation)
# basic HSV histogram comparision with adaptive window size
# see :
# http://docs.opencv.org/3.1.0/db/df8/tutorial_py_meanshift.html
ret, track_window = cv2.CamShift(
img_bproject, track_window, term_crit)
# draw observation on image - in BLUE
x, y, w, h = track_window
frame = cv2.rectangle(
frame, (x, y), (x + w, y + h), (255, 0, 0), 2)
# extract centre of this observation as points
pts = cv2.boxPoints(ret)
pts = np.intp(pts)
# (cx, cy), radius = cv2.minEnclosingCircle(pts)
# use to correct kalman filter
kalman.correct(center(pts))
# get new kalman filter prediction
prediction = kalman.predict()
# draw predicton on image - in GREEN
frame = cv2.rectangle(frame,
(int(prediction[0][0] - (0.5 * w)),
int(prediction[1][0] - (0.5 * h))),
(int(prediction[0][0] + (0.5 * w)),
int(prediction[1][0] + (0.5 * h))),
(0,
255,
0),
2)
else:
# before we have cropped anything show the mask we are using
# for the S and V components of the HSV image
img_hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# select all Hue values (0-> 180) but eliminate values with very
# low saturation or value (due to lack of useful colour info.)
mask = cv2.inRange(
img_hsv, np.array(
(0., float(s_lower), float(v_lower))), np.array(
(180., float(s_upper), float(v_upper))))
cv2.imshow(window_name2, mask)
# display image
cv2.imshow(window_name, frame)
cv2.setWindowProperty(
window_name,
cv2.WND_PROP_FULLSCREEN,
cv2.WINDOW_FULLSCREEN & fullscreen)
# stop the timer and convert to ms. (to see how long processing and
# display takes)
stop_t = ((cv2.getTickCount() - start_t) /
cv2.getTickFrequency()) * 1000
# start the event loop - essential
# cv2.waitKey() is a keyboard binding function (argument is the time in
# milliseconds). It waits for specified milliseconds for any keyboard
# event. If you press any key in that time, the program continues.
# If 0 is passed, it waits indefinitely for a key stroke.
# (bitwise and with 0xFF to extract least significant byte of
# multi-byte response)
# wait 40ms or less depending on processing time taken (i.e. 1000ms /
# 25 fps = 40 ms)
key = cv2.waitKey(max(2, 40 - int(math.ceil(stop_t)))) & 0xFF
# It can also be set to detect specific key strokes by recording which
# key is pressed
# e.g. if user presses "x" then exit / press "f" for fullscreen
# display
if (key == ord('x')):
keep_processing = False
elif (key == ord('f')):
fullscreen = not (fullscreen)
# close all windows
cv2.destroyAllWindows()
else:
print("No video file specified or camera connected.")
#####################################################################