-
Notifications
You must be signed in to change notification settings - Fork 713
/
Copy pathsparse_model.py
113 lines (92 loc) · 4.34 KB
/
sparse_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
from __future__ import absolute_import, division, print_function
import tensorflow as tf
def full_connect(inputs,
weights_shape,
biases_shape,
is_train=True,
FLAGS=None):
with tf.device("/cpu:0"):
weights = tf.get_variable(
"weights", weights_shape, initializer=tf.random_normal_initializer())
biases = tf.get_variable(
"biases", biases_shape, initializer=tf.random_normal_initializer())
layer = tf.matmul(inputs, weights) + biases
if FLAGS.enable_bn and is_train:
mean, var = tf.nn.moments(layer, axes=[0])
scale = tf.get_variable(
"scale", biases_shape, initializer=tf.random_normal_initializer())
shift = tf.get_variable(
"shift", biases_shape, initializer=tf.random_normal_initializer())
layer = tf.nn.batch_normalization(layer, mean, var, shift, scale,
FLAGS.bn_epsilon)
return layer
def sparse_full_connect(sparse_ids,
sparse_values,
weights_shape,
biases_shape,
is_train=True,
FLAGS=None):
weights = tf.get_variable(
"weights", weights_shape, initializer=tf.random_normal_initializer())
biases = tf.get_variable(
"biases", biases_shape, initializer=tf.random_normal_initializer())
return tf.nn.embedding_lookup_sparse(
weights, sparse_ids, sparse_values, combiner="sum") + biases
def full_connect_relu(inputs,
weights_shape,
biases_shape,
is_train=True,
FLAGS=None):
return tf.nn.relu(
full_connect(inputs, weights_shape, biases_shape, is_train, FLAGS))
def customized_inference(sparse_ids, sparse_values, is_train=True, FLAGS=None):
hidden1_units = 128
hidden2_units = 32
hidden3_units = 8
with tf.variable_scope("input"):
sparse_layer = sparse_full_connect(sparse_ids, sparse_values,
[FLAGS.feature_size, hidden1_units],
[hidden1_units], is_train, FLAGS)
layer = tf.nn.relu(sparse_layer)
with tf.variable_scope("layer0"):
layer = full_connect_relu(layer, [hidden1_units, hidden2_units],
[hidden2_units], is_train, FLAGS)
with tf.variable_scope("layer1"):
layer = full_connect_relu(layer, [hidden2_units, hidden3_units],
[hidden3_units], is_train, FLAGS)
if FLAGS.enable_dropout and is_train:
layer = tf.nn.dropout(layer, FLAGS.dropout_keep_prob)
with tf.variable_scope("output"):
layer = full_connect(layer, [hidden3_units, FLAGS.label_size],
[FLAGS.label_size], is_train, FLAGS)
return layer
def dnn_inference(sparse_ids, sparse_values, is_train=True, FLAGS=None):
model_network_hidden_units = [int(i) for i in FLAGS.model_network.split()]
with tf.variable_scope("input"):
sparse_layer = sparse_full_connect(sparse_ids, sparse_values, [
FLAGS.feature_size, model_network_hidden_units[0]
], [model_network_hidden_units[0]], is_train, FLAGS)
layer = tf.nn.relu(sparse_layer)
for i in range(len(model_network_hidden_units) - 1):
with tf.variable_scope("layer{}".format(i)):
layer = full_connect_relu(layer, [
model_network_hidden_units[i], model_network_hidden_units[i + 1]
], [model_network_hidden_units[i + 1]], is_train, FLAGS)
with tf.variable_scope("output"):
layer = full_connect(layer,
[model_network_hidden_units[-1], FLAGS.label_size],
[FLAGS.label_size], is_train, FLAGS)
return layer
def lr_inference(sparse_ids, sparse_values, is_train=True, FLAGS=None):
with tf.variable_scope("logistic_regression"):
layer = sparse_full_connect(sparse_ids, sparse_values,
[FLAGS.input_units, FLAGS.label_size],
[FLAGS.label_size], is_train, FLAGS)
return layer
def wide_and_deep_inference(sparse_ids,
sparse_values,
is_train=True,
FLAGS=None):
return lr_inference(sparse_ids,
sparse_values, is_train, FLAGS) + dnn_inference(
sparse_ids, sparse_values, is_train, FLAGS)