-
Notifications
You must be signed in to change notification settings - Fork 191
/
Copy pathbenchmark_grpc_client.py
executable file
·48 lines (39 loc) · 1.35 KB
/
benchmark_grpc_client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#!/usr/bin/env python
import time
import numpy
import tensorflow as tf
from grpc.beta import implementations
from tensorflow_serving.apis import predict_pb2, prediction_service_pb2
def main():
host = "0.0.0.0"
port = 8501
model_name = "default"
model_version = -1
signature_name = ""
request_timeout = 10.0
# Generate inference data
keys = numpy.asarray([[1]])
keys_tensor_proto = tf.contrib.util.make_tensor_proto(keys, dtype=tf.int32)
features = numpy.asarray([[1, 2, 3, 4, 5, 6, 7, 8, 9]])
features_tensor_proto = tf.contrib.util.make_tensor_proto(
features, dtype=tf.float32)
# Create gRPC client
channel = implementations.insecure_channel(host, port)
stub = prediction_service_pb2.beta_create_PredictionService_stub(channel)
request = predict_pb2.PredictRequest()
request.model_spec.name = model_name
if model_version > 0:
request.model_spec.version.value = model_version
if signature_name != "":
request.model_spec.signature_name = signature_name
request.inputs["keys"].CopyFrom(keys_tensor_proto)
#request.inputs["features"].CopyFrom(features_tensor_proto)
# Send request
start_time = time.time()
for i in range(100):
result = stub.Predict(request, request_timeout)
end_time = time.time()
print("Cost time: {}".format(end_time - start_time))
print(result)
if __name__ == "__main__":
main()