-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathintegral_test3.sage
executable file
·81 lines (72 loc) · 2.92 KB
/
integral_test3.sage
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
#!/usr/bin/env sage
##########################################################################
# Copyright (C) 2008 Tim Lahey <[email protected]>
#
# Distributed under the terms of the BSD License:
#
# http://www.opensource.org/licenses/bsd-license.php
##########################################################################
# The source of the integrals for comparison are from:
# Spiegel, Murray R.
# Mathematical Handbook of Formulas and Tables
# Schaum's Outline Series McGraw-Hill 1968
# 14.105-14.112
# Original Inspiration for this from:
# http://axiom-developer.org/axiom-website/CATS/
#
# Thanks to Tim Daly.
# Define the necessary variables
var('x,a,b,n,m,p,q')
# Define the table of integral tests. Format is test #, [integrand,desired result]
int_table = { 1 : [1/((a*x+b)*(p*x+q)),1/(b*p-a*q)*log((p*x+q)/(a*x+b))],
2 : [x/((a*x+b)*(p*x+q)),1/(b*p-a*q)*(b/a*log(a*x+b)-q/p*log(p*x+q))],
3 : [1/((a*x+b)^2*(p*x+q)),1/(b*p-a*q)*(1/(a*x+b)+p/(b*p-a*q)*log((p*x+q)/(a*x+b)))],
4 : [x/((a*x+b)^2*(p*x+q)),1/(b*p-a*q)*(q/(b*p-a*q)*log((a*x+b)/(p*x+q))-b/(a*(a*x+b)))],
5 : [x^2/((a*x+b)^2*(p*x+q)),b^2/((b*p-a*q)*a^2*(a*x+b))+1/(b*p-a*q)^2*(q^2/p*log(p*x+q)+((b*(b*p-2*a*q))/a^2)*log(a*x+b))],
6 : [1/((a*x+b)^m*(p*x+q)^n),0],
7 : [(a*x+b)/(p*x+q),(a*x)/p+(b*p-a*q)/p^2*log(p*x+q)],
8 : [(a*x+b)^m/(p*x+q)^n,0]
}
# Check to see if test passed and print result.
def test_eval(test, test_int, desired_result):
try:
test_cmp = (desired_result.simplify_full()-test_int.simplify_full()).simplify_full()
except:
print "Test", test,": Test failed. Unable to compare results."
print "Calculated Integral: ", test_int
return
if (test_cmp == 0):
print "Test", test,": Test Passed."
else:
print "Test", test," Difference in Results:", test_cmp
# If the difference is constant, the result is valid within a constant of integration.
if (test_cmp.diff(x) == 0):
print "Correct within a constant of integration."
print "Test Passed."
else:
div_cmp = (desired_result.simplify_full()/test_int.simplify_full()).simplify_full()
if (div_cmp.diff(x) == 0):
print "Division of Results:", div_cmp
print "Correct within a constant multiple."
else:
print "Test Failed."
print "Calculated Integral: ", test_int
print "Comparison Integral: ", desired_result
# Time integration of Maxima and FriCAS for integral.
def time_Maxima_friCAS(integrand):
mx_time = timeit.eval('integrand.integrate(x)')
fCAS_time= timeit.eval('axiom.integrate(integrand,x)')
print "Maxima Time:", mx_time.stats[3], mx_time.stats[4]
print "FriCAS Time:", fCAS_time.stats[3], fCAS_time.stats[4]
# Loop over tests
for test in int_table.keys():
test_set = int_table[test]
integrand = test_set[0]
desired_result = test_set[1]
try:
test_int = integrand.integrate(x)
except:
print "Test", test,": Test failed due to exception."
else:
test_eval(test,test_int,desired_result)
time_Maxima_friCAS(integrand)