-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_model.py
138 lines (128 loc) · 4.63 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# -*- coding: utf-8 -*-
"""
Created on Wed Mar 3 18:08:52 2021
@author: Tim
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import pandas as pd
import numpy as np
import pickle
from torch.utils.data import Dataset, DataLoader
class CharDataset(Dataset):
def __init__(self, path):
df = pd.read_csv(path)
self.labels = df['label']
self.imgs = np.expand_dims(
df.drop('label', axis = 1).divide(255).astype('float32').to_numpy().reshape(
len(self.labels), 28, 28), axis = 1)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
img = self.imgs[idx]
label = letter2Index(self.labels.iloc[idx])
return img, label
def __len__(self):
return len(self.labels)
alphabet = 'ACTG'
def letter2Index(letter):
# Transforms letter to index
return alphabet.find(letter)
def encode(indices):
# One hot encodes a list of indices
v = torch.zeros(len(indices), len(alphabet))
for i in range(len(indices)):
v[i, indices[i]] = 1
return v
class CharCNN(nn.Module):
def __init__(self):
super(CharCNN, self).__init__()
self.input = nn.Conv2d(1, 25, 5)
self.pool = nn.MaxPool2d(2)
self.conv = nn.Conv2d(25, 50, 5)
self.dense = nn.Linear(50*4*4, 1000)
self.out = nn.Linear(1000, 4)
self.flatten = nn.Flatten()
self.drop = nn.Dropout()
def forward(self, x):
x = self.pool(F.relu(self.input(x)))
x = self.pool(F.relu(self.conv(x)))
x = F.relu(self.drop(self.dense(self.flatten(x))))
x = self.drop(self.out(x))
return x
def train_model(model, criterion, optimizer, dataloader, cv, num_epochs = 1):
training_losses = []
cv_losses = []
acc = []
for epoch in range(num_epochs):
total_loss = 0.0
running_loss = 0.0
i = 0
for x, y in dataloader: # Training step
model.train()
x = x.to(device)
y = y.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = model(x)
loss = criterion(outputs, y)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % 200 == 199: # print every 2020 mini-batches
print('[%d, %5d] loss: %.9f' %
(epoch + 1, i + 1, running_loss / (200 * len(x))))
total_loss += running_loss
running_loss = 0.0
i += 1
training_losses.append(total_loss)
total_loss = 0.0
incorrect = 0
# Evaluation
with torch.no_grad():
for x, y in cv:
x = x.to(device)
y = y.to(device)
model.eval()
outputs = model(x)
loss = criterion(outputs, y)
total_loss += loss.item()
i += 1
incorrect += torch.sum(torch.abs(
torch.round(s(outputs)) - encode(y).to(device))) / 2
cv_losses.append(total_loss)
acc.append(incorrect)
print('Finished Training')
PATH = model.__class__.__name__ + '.pth'
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': loss,
}, PATH)
with open('losses', 'wb') as f:
pickle.dump([training_losses, cv_losses, acc], f)
print(training_losses)
print(cv_losses)
print(acc)
return model
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
ds = CharDataset("train.csv")
train_dataloader = DataLoader(ds, batch_size = 128, shuffle = True, pin_memory = True, num_workers = 6)
ds = CharDataset("CV.csv")
cv_dataloader = DataLoader(ds, batch_size = 512, shuffle = True, pin_memory = True, num_workers = 6)
model = CharCNN()
model.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr = 0.0003)
# Loading from previous checkpoint
#PATH = model.__class__.__name__ + '.pth'
#checkpoint = torch.load(PATH)
#model.load_state_dict(checkpoint['model_state_dict'])
#optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
s = nn.Softmax(dim = 1)
model = train_model(model, criterion, optimizer, train_dataloader, cv_dataloader, num_epochs = 30)