You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I meet this question. (version: Ubuntu 20.04, cuda=11.8, torch=2.4.0, 915b82d)
Here the command I input in terminal: python launch.py --config configs/fantasia3d.yaml --train --gpu 0 system.prompt_processor.prompt="hulk" system.geometry.shape_init=mesh:load/shapes/human.obj system.geometry.shape_init_params=0.9 system.geometry.shape_init_mesh_up=+y system.geometry.shape_init_mesh_front=+z
And to print fault message I add these 2 line code in launch.py:
import faulthandler
faulthandler.enable()
Then it print message in terminal as below:
Epoch 0: | | 4540/? [07:57<00:00, 9.51it/s]Fatal Python error: Segmentation fault
Thread 0x00007f57168aa700 (most recent call first):
<no Python frame>
Thread 0x00007f5741fff700 (most recent call first):
File "/home/jane/anaconda3/envs/3s/lib/python3.10/threading.py", line 324 in wait
File "/home/jane/anaconda3/envs/3s/lib/python3.10/threading.py", line 607 in wait
File "/home/jane/anaconda3/envs/3s/lib/python3.10/site-packages/tqdm/_monitor.py", line 60 in run
File "/home/jane/anaconda3/envs/3s/lib/python3.10/threading.py", line 1016 in _bootstrap_inner
File "/home/jane/anaconda3/envs/3s/lib/python3.10/threading.py", line 973 in _bootstrap
Thread 0x00007f58548cf700 (most recent call first):
File "/home/jane/anaconda3/envs/3s/lib/python3.10/threading.py", line 324 in wait
File "/home/jane/anaconda3/envs/3s/lib/python3.10/threading.py", line 607 in wait
File "/home/jane/anaconda3/envs/3s/lib/python3.10/site-packages/tqdm/_monitor.py", line 60 in run
File "/home/jane/anaconda3/envs/3s/lib/python3.10/threading.py", line 1016 in _bootstrap_inner
File "/home/jane/anaconda3/envs/3s/lib/python3.10/threading.py", line 973 in _bootstrap
Thread 0x00007f5864935700 (most recent call first):
File "/home/jane/anaconda3/envs/3s/lib/python3.10/threading.py", line 324 in wait
File "/home/jane/anaconda3/envs/3s/lib/python3.10/queue.py", line 180 in get
File "/home/jane/anaconda3/envs/3s/lib/python3.10/site-packages/tensorboard/summary/writer/event_file_writer.py", line 269 in _run
File "/home/jane/anaconda3/envs/3s/lib/python3.10/site-packages/tensorboard/summary/writer/event_file_writer.py", line 244 in run
File "/home/jane/anaconda3/envs/3s/lib/python3.10/threading.py", line 1016 in _bootstrap_inner
File "/home/jane/anaconda3/envs/3s/lib/python3.10/threading.py", line 973 in _bootstrap
Current thread 0x00007f5ab7804280 (most recent call first):
File "/home/jane/Desktop/threestudio/threestudio/utils/base.py", line 43 in do_update_step_end
File "/home/jane/Desktop/threestudio/threestudio/systems/base.py", line 125 in on_train_batch_end
File "/home/jane/anaconda3/envs/3s/lib/python3.10/site-packages/pytorch_lightning/trainer/call.py", line 167 in _call_lightning_module_hook
File "/home/jane/anaconda3/envs/3s/lib/python3.10/site-packages/pytorch_lightning/loops/training_epoch_loop.py", line 270 in advance
File "/home/jane/anaconda3/envs/3s/lib/python3.10/site-packages/pytorch_lightning/loops/training_epoch_loop.py", line 140 in run
File "/home/jane/anaconda3/envs/3s/lib/python3.10/site-packages/pytorch_lightning/loops/fit_loop.py", line 363 in advance
File "/home/jane/anaconda3/envs/3s/lib/python3.10/site-packages/pytorch_lightning/loops/fit_loop.py", line 205 in run
File "/home/jane/anaconda3/envs/3s/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 1025 in _run_stage
File "/home/jane/anaconda3/envs/3s/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 981 in _run
File "/home/jane/anaconda3/envs/3s/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 574 in _fit_impl
File "/home/jane/anaconda3/envs/3s/lib/python3.10/site-packages/pytorch_lightning/trainer/call.py", line 47 in _call_and_handle_interrupt
File "/home/jane/anaconda3/envs/3s/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 538 in fit
File "/home/jane/Desktop/threestudio/launch.py", line 250 in main
File "/home/jane/Desktop/threestudio/launch.py", line 307 in <module>
Extension modules: numpy.core._multiarray_umath, numpy.core._multiarray_tests, numpy.linalg._umath_linalg, numpy.fft._pocketfft_internal, numpy.random._common, numpy.random.bit_generator, numpy.random._bounded_integers, numpy.random._mt19937, numpy.random.mtrand, numpy.random._philox, numpy.random._pcg64, numpy.random._sfc64, numpy.random._generator, torch._C, torch._C._fft, torch._C._linalg, torch._C._nested, torch._C._nn, torch._C._sparse, torch._C._special, gmpy2.gmpy2, scipy._lib._ccallback_c, scipy.signal._sigtools, scipy.linalg._fblas, scipy.linalg._flapack, scipy.linalg.cython_lapack, scipy.linalg._cythonized_array_utils, scipy.linalg._solve_toeplitz, scipy.linalg._decomp_lu_cython, scipy.linalg._matfuncs_sqrtm_triu, scipy.linalg.cython_blas, scipy.linalg._matfuncs_expm, scipy.linalg._decomp_update, scipy.sparse._sparsetools, _csparsetools, scipy.sparse._csparsetools, scipy.sparse.linalg._dsolve._superlu, scipy.sparse.linalg._eigen.arpack._arpack, scipy.sparse.linalg._propack._spropack, scipy.sparse.linalg._propack._dpropack, scipy.sparse.linalg._propack._cpropack, scipy.sparse.linalg._propack._zpropack, scipy.sparse.csgraph._tools, scipy.sparse.csgraph._shortest_path, scipy.sparse.csgraph._traversal, scipy.sparse.csgraph._min_spanning_tree, scipy.sparse.csgraph._flow, scipy.sparse.csgraph._matching, scipy.sparse.csgraph._reordering, scipy.special._ufuncs_cxx, scipy.special._ufuncs, scipy.special._specfun, scipy.special._comb, scipy.special._ellip_harm_2, scipy._lib._uarray._uarray, scipy.signal._max_len_seq_inner, scipy.signal._upfirdn_apply, scipy.signal._spline, scipy.spatial._ckdtree, scipy._lib.messagestream, scipy.spatial._qhull, scipy.spatial._voronoi, scipy.spatial._distance_wrap, scipy.spatial._hausdorff, scipy.spatial.transform._rotation, scipy.interpolate._fitpack, scipy.interpolate._dfitpack, scipy.optimize._group_columns, scipy.optimize._trlib._trlib, scipy.optimize._lbfgsb, _moduleTNC, scipy.optimize._moduleTNC, scipy.optimize._cobyla, scipy.optimize._slsqp, scipy.optimize._minpack, scipy.optimize._lsq.givens_elimination, scipy.optimize._zeros, scipy.optimize._highs.cython.src._highs_wrapper, scipy.optimize._highs._highs_wrapper, scipy.optimize._highs.cython.src._highs_constants, scipy.optimize._highs._highs_constants, scipy.linalg._interpolative, scipy.optimize._bglu_dense, scipy.optimize._lsap, scipy.optimize._direct, scipy.interpolate._bspl, scipy.interpolate._ppoly, scipy.interpolate.interpnd, scipy.interpolate._rbfinterp_pythran, scipy.interpolate._rgi_cython, scipy.ndimage._nd_image, _ni_label, scipy.ndimage._ni_label, scipy.signal._sosfilt, scipy.signal._spectral, scipy.integrate._odepack, scipy.integrate._quadpack, scipy.integrate._vode, scipy.integrate._dop, scipy.integrate._lsoda, scipy.special.cython_special, scipy.stats._stats, scipy.stats._biasedurn, scipy.stats._levy_stable.levyst, scipy.stats._stats_pythran, scipy.stats._ansari_swilk_statistics, scipy.stats._sobol, scipy.stats._qmc_cy, scipy.stats._mvn, scipy.stats._rcont.rcont, scipy.stats._unuran.unuran_wrapper, scipy.signal._peak_finding_utils, PIL._imaging, kiwisolver._cext, regex._regex, _brotli, yaml._yaml, sentencepiece._sentencepiece, PIL._imagingft, skimage.morphology._misc_cy, skimage.measure._ccomp, _skeletonize_lee_cy, skimage.morphology._skeletonize_lee_cy, skimage.morphology._skeletonize_various_cy, skimage._shared.geometry, skimage.measure._pnpoly, skimage.morphology._convex_hull, skimage.morphology._grayreconstruct, skimage.morphology._extrema_cy, skimage.morphology._flood_fill_cy, skimage.morphology._max_tree, google._upb._message, psutil._psutil_linux, psutil._psutil_posix, lxml._elementpath, lxml.etree, xxhash._xxhash, embreex.rtcore, embreex.rtcore_scene, embreex.mesh_construction, shapely.lib, shapely._geos, shapely._geometry_helpers, mcubes._mcubes, markupsafe._speedups, sklearn.__check_build._check_build, pandas._libs.tslibs.ccalendar, pandas._libs.tslibs.np_datetime, pandas._libs.tslibs.dtypes, pandas._libs.tslibs.base, pandas._libs.tslibs.nattype, pandas._libs.tslibs.timezones, pandas._libs.tslibs.fields, pandas._libs.tslibs.timedeltas, pandas._libs.tslibs.tzconversion, pandas._libs.tslibs.timestamps, pandas._libs.properties, pandas._libs.tslibs.offsets, pandas._libs.tslibs.strptime, pandas._libs.tslibs.parsing, pandas._libs.tslibs.conversion, pandas._libs.tslibs.period, pandas._libs.tslibs.vectorized, pandas._libs.ops_dispatch, pandas._libs.missing, pandas._libs.hashtable, pandas._libs.algos, pandas._libs.interval, pandas._libs.lib, pandas._libs.ops, pandas._libs.hashing, pandas._libs.arrays, pandas._libs.tslib, pandas._libs.sparse, pandas._libs.internals, pandas._libs.indexing, pandas._libs.index, pandas._libs.writers, pandas._libs.join, pandas._libs.window.aggregations, pandas._libs.window.indexers, pandas._libs.reshape, pandas._libs.groupby, pandas._libs.json, pandas._libs.parsers, pandas._libs.testing, sklearn.utils._isfinite, sklearn.utils.sparsefuncs_fast, sklearn.utils.murmurhash, sklearn.utils._openmp_helpers, sklearn.metrics.cluster._expected_mutual_info_fast, sklearn.preprocessing._csr_polynomial_expansion, sklearn.preprocessing._target_encoder_fast, sklearn.metrics._dist_metrics, sklearn.metrics._pairwise_distances_reduction._datasets_pair, sklearn.utils._cython_blas, sklearn.metrics._pairwise_distances_reduction._base, sklearn.metrics._pairwise_distances_reduction._middle_term_computer, sklearn.utils._heap, sklearn.utils._sorting, sklearn.metrics._pairwise_distances_reduction._argkmin, sklearn.metrics._pairwise_distances_reduction._argkmin_classmode, sklearn.utils._vector_sentinel, sklearn.metrics._pairwise_distances_reduction._radius_neighbors, sklearn.metrics._pairwise_distances_reduction._radius_neighbors_classmode, sklearn.metrics._pairwise_fast, sklearn.neighbors._partition_nodes, sklearn.neighbors._ball_tree, sklearn.neighbors._kd_tree, sklearn.utils.arrayfuncs, sklearn.utils._random, sklearn.utils._seq_dataset, sklearn.linear_model._cd_fast, _loss, sklearn._loss._loss, sklearn.svm._liblinear, sklearn.svm._libsvm, sklearn.svm._libsvm_sparse, sklearn.linear_model._sag_fast, sklearn.utils._weight_vector, sklearn.linear_model._sgd_fast, sklearn.decomposition._online_lda_fast, sklearn.decomposition._cdnmf_fast, numba.core.typeconv._typeconv, numba._helperlib, numba._dynfunc, numba._dispatcher, numba.core.runtime._nrt_python, numba.np.ufunc._internal, numba.experimental.jitclass._box (total: 230)
Segmentation fault (core dumped)
So it seems like a fault occur at File "/home/jane/Desktop/threestudio/threestudio/utils/base.py", line 43 in do_update_step_end, this line is: module = getattr(self, attr)
Sometimes the training process terminates unexpectedly and the system crashes, so I have to force it to shut down. As it has no output message, I cannot figure out what happened.
Finally I have no idea to solve this problem.
Hope someone help me plz... o(╥﹏╥)o
The text was updated successfully, but these errors were encountered:
I meet this question. (version: Ubuntu 20.04, cuda=11.8, torch=2.4.0, 915b82d)
Here the command I input in terminal:
python launch.py --config configs/fantasia3d.yaml --train --gpu 0 system.prompt_processor.prompt="hulk" system.geometry.shape_init=mesh:load/shapes/human.obj system.geometry.shape_init_params=0.9 system.geometry.shape_init_mesh_up=+y system.geometry.shape_init_mesh_front=+z
And to print fault message I add these 2 line code in
launch.py
:Then it print message in terminal as below:
So it seems like a fault occur at
File "/home/jane/Desktop/threestudio/threestudio/utils/base.py", line 43 in do_update_step_end
, this line is:module = getattr(self, attr)
Sometimes the training process terminates unexpectedly and the system crashes, so I have to force it to shut down. As it has no output message, I cannot figure out what happened.
Finally I have no idea to solve this problem.
Hope someone help me plz... o(╥﹏╥)o
The text was updated successfully, but these errors were encountered: