forked from awslabs/amazon-aurora-postgres-monitoring
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaurora_postgres_monitoring.py
245 lines (191 loc) · 7.87 KB
/
aurora_postgres_monitoring.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
from __future__ import print_function
import os
import sys
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
# SPDX-License-Identifier: Apache-2.0
# add the lib directory to the path
sys.path.append(os.path.join(os.path.dirname(__file__), "lib"))
sys.path.append(os.path.join(os.path.dirname(__file__), "sql"))
import boto3
import base64
import pg8000
import datetime
import json
import pgpasslib
from botocore.client import Config
#### Static Configuration
ssl = True
interval = '1 hour'
##################
__version__ = "1.0"
debug = False
pg8000.paramstyle = "qmark"
def run_external_commands(command_set_type, file_name, cursor, cluster):
if not os.path.exists(file_name):
return []
external_commands = None
try:
external_commands = json.load(open(file_name, 'r'))
except ValueError as e:
# handle a malformed user query set gracefully
if e.message == "No JSON object could be decoded":
return []
else:
raise
output_metrics = []
for command in external_commands:
if command['type'] == 'value':
cmd_type = "Query"
else:
cmd_type = "Canary"
print("Executing %s %s: %s" % (command_set_type, cmd_type, command['name']))
try:
t = datetime.datetime.now()
interval = run_command(cursor, command['query'])
value = cursor.fetchone()[0]
if value is None:
value = 0
# append a cloudwatch metric for the value, or the elapsed interval, based upon the configured 'type' value
if command['type'] == 'value':
output_metrics.append({
'MetricName': command['name'],
'Dimensions': [
{'Name': 'ClusterIdentifier', 'Value': cluster}
],
'Timestamp': t,
'Value': value,
'Unit': command['unit']
})
else:
output_metrics.append({
'MetricName': command['name'],
'Dimensions': [
{'Name': 'ClusterIdentifier', 'Value': cluster}
],
'Timestamp': t,
'Value': interval,
'Unit': 'Milliseconds'
})
except Exception as e:
print("Exception running external command %s" % command['name'])
print(e)
return output_metrics
def run_command(cursor, statement):
if debug:
print("Running Statement: %s" % statement)
t = datetime.datetime.now()
cursor.execute(statement)
interval = (datetime.datetime.now() - t).microseconds / 1000
return interval
# nasty hack for backward compatibility, to extract label values from os.environ or event
def get_config_value(labels, configs):
for l in labels:
for c in configs:
if l in c:
if debug:
print("Resolved label value %s from config" % l)
return c[l]
return None
def monitor_cluster(config_sources):
aws_region = get_config_value(['AWS_REGION'], config_sources)
set_debug = get_config_value(['DEBUG', 'debug', 'Debug'], config_sources)
if set_debug is not None and ((isinstance(set_debug,bool) and set_debug) or set_debug.upper() == 'TRUE'):
global debug
debug = True
boto_retries = 4
boto_timeout = 60
if debug:
boto_retries = 0
boto_timeout = 5
config = Config(region_name=aws_region, connect_timeout=boto_timeout, retries={'max_attempts': boto_retries})
kms = boto3.client('kms', config=config)
cw = boto3.client('cloudwatch', config=config)
if debug:
print("Connected to AWS KMS & CloudWatch in %s" % aws_region)
user = get_config_value(['DbUser', 'db_user', 'dbUser', 'DatabaseUser'], config_sources)
host = get_config_value(['HostName', 'cluster_endpoint', 'dbHost', 'db_host', 'ClusterEndpoint'], config_sources)
port = int(get_config_value(['HostPort', 'db_port', 'dbPort', 'ClusterPort'], config_sources))
database = get_config_value(['DatabaseName', 'db_name', 'db'], config_sources)
cluster = get_config_value(['ClusterName', 'cluster_name', 'clusterName'], config_sources)
global interval
interval = get_config_value(['AggregationInterval', 'agg_interval', 'aggregtionInterval', 'ScheduleFrequency'], config_sources)
pwd = None
try:
pwd = pgpasslib.getpass(host, port, database, user)
except pgpasslib.FileNotFound as e:
pass
# check if unencrypted password exists if no pgpasslib
if pwd is None:
pwd = get_config_value(['db_pwd'], config_sources)
# check for encrypted password if the above two don't exist
if pwd is None:
enc_password = get_config_value(['EncryptedPassword', 'encrypted_password', 'encrypted_pwd', 'dbPassword'],
config_sources)
# resolve the authorisation context, if there is one, and decrypt the password
auth_context = get_config_value('kms_auth_context', config_sources)
if auth_context is not None:
auth_context = json.loads(auth_context)
try:
if auth_context is None:
pwd = kms.decrypt(CiphertextBlob=base64.b64decode(enc_password))[
'Plaintext']
else:
pwd = kms.decrypt(CiphertextBlob=base64.b64decode(enc_password), EncryptionContext=auth_context)[
'Plaintext']
except:
print('KMS access failed: exception %s' % sys.exc_info()[1])
print('Encrypted Password: %s' % enc_password)
print('Encryption Context %s' % auth_context)
raise
# Connect to the cluster
try:
if debug:
print('Connecting to Aurora Postgres: %s' % host)
conn = pg8000.connect(database=database, user=user, password=pwd, host=host, port=port, ssl=ssl)
conn.autocommit = True
except:
print('Aurora Postgres Connection Failed: exception %s' % sys.exc_info()[1])
raise
if debug:
print('Successfully Connected to Aurora Postgres')
# create a new cursor for methods to run through
cursor = conn.cursor()
# set application name
set_name = "set application_name to 'AuroraPostgresAdvancedMonitoring-v%s'" % __version__
if debug:
print(set_name)
cursor.execute(set_name)
# run the externally configured commands and save their values in the put metrics
put_metrics = run_external_commands('Aurora Postgres Diagnostic', 'monitoring-queries.json', cursor, cluster)
# run the supplied user commands and append their values onto the put metrics
put_metrics.extend(run_external_commands('User Configured', 'user-queries.json', cursor, cluster))
# add a metric for how many metrics we're exporting (whoa inception)
put_metrics.extend([{
'MetricName': 'CloudwatchMetricsExported',
'Dimensions': [
{'Name': 'ClusterIdentifier', 'Value': cluster}
],
'Timestamp': datetime.datetime.utcnow(),
'Value': len(put_metrics),
'Unit': 'Count'
}])
max_metrics = 20
group = 0
print("Publishing %s CloudWatch Metrics" % (len(put_metrics)))
for x in range(0, len(put_metrics), max_metrics):
group += 1
# slice the metrics into blocks of 20 or just the remaining metrics
put = put_metrics[x:(x + max_metrics)]
if debug:
print("Metrics group %s: %s Datapoints" % (group, len(put)))
print(put)
try:
cw.put_metric_data(
Namespace='AuroraPostgres',
MetricData=put
)
except:
print('Pushing metrics to CloudWatch failed: exception %s' % sys.exc_info()[1])
raise
cursor.close()
conn.close()