forked from WecoAI/aideml
-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathplayground-series-s3e26.py
65 lines (52 loc) · 1.95 KB
/
playground-series-s3e26.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import log_loss
from sklearn.preprocessing import OneHotEncoder, StandardScaler
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
# Load the data
train_data = pd.read_csv("./input/train.csv")
test_data = pd.read_csv("./input/test.csv")
# Separate features and target
X = train_data.drop(["Status", "id"], axis=1)
y = train_data["Status"]
X_test = test_data.drop("id", axis=1)
# Preprocessing for numerical data
numerical_transformer = StandardScaler()
# Preprocessing for categorical data
categorical_transformer = OneHotEncoder(handle_unknown="ignore")
# Bundle preprocessing for numerical and categorical data
preprocessor = ColumnTransformer(
transformers=[
("num", numerical_transformer, X.select_dtypes(exclude=["object"]).columns),
("cat", categorical_transformer, X.select_dtypes(include=["object"]).columns),
]
)
# Define the model
model = RandomForestClassifier(n_estimators=100, random_state=0)
# Bundle preprocessing and modeling code in a pipeline
clf = Pipeline(steps=[("preprocessor", preprocessor), ("model", model)])
# Split data into train and validation sets
X_train, X_valid, y_train, y_valid = train_test_split(
X, y, train_size=0.8, test_size=0.2, random_state=0
)
# Preprocessing of training data, fit model
clf.fit(X_train, y_train)
# Preprocessing of validation data, get predictions
preds = clf.predict_proba(X_valid)
# Evaluate the model
score = log_loss(pd.get_dummies(y_valid), preds)
print("Log Loss:", score)
# Preprocessing of test data, fit model
test_preds = clf.predict_proba(X_test)
# Generate submission file
output = pd.DataFrame(
{
"id": test_data.id,
"Status_C": test_preds[:, 0],
"Status_CL": test_preds[:, 1],
"Status_D": test_preds[:, 2],
}
)
output.to_csv("./working/submission.csv", index=False)