forked from WecoAI/aideml
-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathcat-in-the-dat-ii.py
78 lines (64 loc) · 2.58 KB
/
cat-in-the-dat-ii.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_auc_score
from lightgbm import LGBMClassifier
from sklearn.preprocessing import OrdinalEncoder, OneHotEncoder
# Load the data
train_data = pd.read_csv("./input/train.csv")
test_data = pd.read_csv("./input/test.csv")
# Separate target from predictors
y = train_data["target"]
X = train_data.drop(["target", "id"], axis=1)
X_test = test_data.drop("id", axis=1)
# List of columns by type
binary_cols = [col for col in X.columns if "bin" in col]
ordinal_cols = [col for col in X.columns if "ord" in col]
nominal_cols = [col for col in X.columns if "nom" in col]
cyclical_cols = ["day", "month"]
# Ordinal encoding for binary and ordinal features
ordinal_encoder = OrdinalEncoder()
X[binary_cols + ordinal_cols] = ordinal_encoder.fit_transform(
X[binary_cols + ordinal_cols]
)
X_test[binary_cols + ordinal_cols] = ordinal_encoder.transform(
X_test[binary_cols + ordinal_cols]
)
# One-hot encoding for nominal features with low cardinality
low_cardinality_nom_cols = [col for col in nominal_cols if X[col].nunique() < 10]
one_hot_encoder = OneHotEncoder(handle_unknown="ignore", sparse=False)
X_low_card_nom = pd.DataFrame(
one_hot_encoder.fit_transform(X[low_cardinality_nom_cols])
)
X_test_low_card_nom = pd.DataFrame(
one_hot_encoder.transform(X_test[low_cardinality_nom_cols])
)
# Frequency encoding for nominal features with high cardinality
high_cardinality_nom_cols = [col for col in nominal_cols if X[col].nunique() >= 10]
for col in high_cardinality_nom_cols:
freq_encoder = X[col].value_counts(normalize=True)
X[col] = X[col].map(freq_encoder)
X_test[col] = X_test[col].map(freq_encoder)
# Combine all features
X = pd.concat([X, X_low_card_nom], axis=1).drop(low_cardinality_nom_cols, axis=1)
X_test = pd.concat([X_test, X_test_low_card_nom], axis=1).drop(
low_cardinality_nom_cols, axis=1
)
# Split the data into training and validation sets
X_train, X_valid, y_train, y_valid = train_test_split(
X, y, train_size=0.8, test_size=0.2, random_state=0
)
# Define the model
model = LGBMClassifier()
# Train the model
model.fit(X_train, y_train)
# Predict on the validation set
valid_preds = model.predict_proba(X_valid)[:, 1]
# Evaluate the model
roc_auc = roc_auc_score(y_valid, valid_preds)
print(f"Validation ROC AUC Score: {roc_auc}")
# Predict on the test set
test_preds = model.predict_proba(X_test)[:, 1]
# Save the predictions to a CSV file
output = pd.DataFrame({"id": test_data.id, "target": test_preds})
output.to_csv("./working/submission.csv", index=False)