-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy patharbor_homeostasis.py
executable file
·265 lines (210 loc) · 11 KB
/
arbor_homeostasis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
#!/usr/bin/env python3.10
"""Arbor simulation of a single cell
Arbor simulation of a single cell receiving inhibitory and plastic
excitatory stimulus.
"""
import itertools
import json
import arbor
from arbor import units as U
import numpy
def generate_poisson_spike_train(rate, duration):
"""Returns a Poisson spike train.
rate -- the rate of the spike train, in Hz
duration -- the duration of the spike train, in s
rng -- random number generator
"""
n_events = numpy.round(rate * duration)
if n_events:
size = numpy.random.poisson(n_events)
return numpy.sort(numpy.random.uniform(0.0, duration, size)) * U.s
return numpy.array([]) * U.s
class SingleRecipe(arbor.recipe):
"""Implementation of Arbor simulation recipe."""
def __init__(self, config, cat_file, considered_neuron):
"""Initialize the recipe from config."""
# The base C++ class constructor must be called first, to ensure that
# all memory in the C++ class is initialized correctly.
arbor.recipe.__init__(self)
# load custom catalogue
catalogue = arbor.load_catalogue(cat_file)
self.the_props = arbor.neuron_cable_properties()
self.the_cat = catalogue
self.the_cat.extend(arbor.default_catalogue(), "")
self.the_props.catalogue = self.the_cat
self.config = config
self.considered_neuron = considered_neuron
def num_cells(self):
"""Return the number of cells."""
return 2
def num_sources(self, gid):
"""Return the number of spikes sources on gid."""
return 1
def num_targets(self, gid):
"""Return the number of post-synaptic targets on gid."""
return 2
def cell_kind(self, gid):
"""Return type of cell with gid."""
return arbor.cell_kind.cable
def cell_description(self, gid):
"""Return cell description of gid."""
sim_config = self.config["simulation"]
neuron_config = self.config["neuron"]
# morphology
tree = arbor.segment_tree()
radius = neuron_config["radius"]
tree.append(arbor.mnpos,
arbor.mpoint(-radius, 0, 0, radius),
arbor.mpoint(radius, 0, 0, radius),
tag=1)
labels = arbor.label_dict({'center': '(location 0 0.5)'})
# current to current density conversion (necessary to simulate point neurons))
height = 2*radius
area = 2 * numpy.pi * radius*U.um * height*U.um # surface area of the cylinder (excluding the circle-shaped ends, since Arbor does not consider current flux there)
area_cm2 = 2 * numpy.pi * radius * height * (1e-4)**2 # surface area of the cylinder in cm^2
i_factor = (1e-9/1e-3) / area_cm2 # current to current density conversion factor (nA to mA/cm^2; necessary for point neurons)
# cell mechanism
dt = sim_config["dt"]*U.ms # timestep
tau_mem = neuron_config["tau_e"]*U.ms # membrane time constant
R_leak = 1/(1000*neuron_config["g_leak"])*U.MOhm # subthreshold membrane conductance
C_mem = tau_mem/R_leak # absolute membrane capacitance for point neuron
c_mem = C_mem / area # specific membrane capacitance
v_thresh = neuron_config["v_thresh"]*U.mV # threshold voltage
decor = arbor.decor()
decor.set_property(Vm=neuron_config["e_leak"]*U.mV, cm=c_mem)
lif = arbor.mechanism(neuron_config["type"])
lif.set("e_thresh", v_thresh.value_as(U.mV))
lif.set("e_leak", neuron_config["e_leak"])
lif.set("e_reset", neuron_config["e_reset"])
lif.set("g_leak", 1/R_leak.value_as(U.MOhm))
lif.set("g_reset", neuron_config["g_reset"])
lif.set("tau_refrac", neuron_config["t_ref"])
lif.set("i_factor", i_factor)
decor.paint('(all)', arbor.density(lif))
decor.place('"center"', arbor.threshold_detector(v_thresh), "spike_detector")
# plastic synapse with steady input
syn_config_steady = self.config["stimulus"]["steady"]
mech_steady = arbor.mechanism('deltasyn_homeostasis')
mech_steady.set('dw_plus', syn_config_steady["dw_plus"])
mech_steady.set('dw_minus', syn_config_steady["dw_minus"])
mech_steady.set('w_init', syn_config_steady["w_init"])
mech_steady.set('w_max', syn_config_steady["w_max"])
mech_steady.set('delta_factor', tau_mem.value_as(U.ms)/dt.value_as(U.ms))
decor.place('"center"', arbor.synapse(mech_steady), "input_steady")
# static synapse with varying input
syn_config_varying = self.config["stimulus"]["varying"]
mech_varying = arbor.mechanism('deltasyn')
mech_varying.set('psc_spike', syn_config_varying["w_non_plastic"])
mech_varying.set('delta_factor', tau_mem.value_as(U.ms)/dt.value_as(U.ms))
decor.place('"center"', arbor.synapse(mech_varying), "input_varying")
return arbor.cable_cell(tree, decor, labels)
def event_generators(self, gid):
"""Return event generators on gid."""
syn_config_steady = self.config["stimulus"]["steady"]
syn_config_varying = self.config["stimulus"]["varying"]
dt_steady = syn_config_steady["dt"]*U.ms
dt_varying = syn_config_varying["dt"]*U.ms
# generate spikes for steady input
stimulus_times_steady = numpy.concatenate([generate_poisson_spike_train(rate, dt_steady.value_as(U.s)) + dt_steady*i for i, rate in enumerate(syn_config_steady["rates"])])
#numpy.savetxt(f"arbor_spikes_steady_{self.considered_neuron}.dat", stimulus_times_steady)
# generate spikes for varying input
stimulus_times_varying = numpy.concatenate([generate_poisson_spike_train(rate, dt_varying.value_as(U.s)) + dt_varying*i for i, rate in enumerate(syn_config_varying["rates"])])
#numpy.savetxt(f"arbor_spikes_varying_{self.considered_neuron}.dat", stimulus_times_varying)
# store varying input rate
input_dts = numpy.arange(0., len(syn_config_varying["rates"])*dt_varying.value_as(U.ms), dt_varying.value_as(U.ms))
input_x = list(itertools.chain(*zip(input_dts, input_dts)))
input_y = [0] + list(itertools.chain(*zip(syn_config_varying["rates"], syn_config_varying["rates"])))[:-1]
input_stacked = numpy.column_stack([input_x, input_y])
numpy.savetxt(f"arbor_input_{self.considered_neuron}.dat", input_stacked)
# create spike generators
# neuron with homeostasis
if self.considered_neuron == 1:
spike_steady = arbor.event_generator("input_steady", 0, arbor.explicit_schedule(stimulus_times_steady))
# neuron without homeostasis (control case)
else:
spike_steady = arbor.event_generator("input_steady", 0, arbor.explicit_schedule([]))
spike_varying = arbor.event_generator("input_varying", 0, arbor.explicit_schedule(stimulus_times_varying)) # weight is set via 'psc_spike'
return [spike_steady, spike_varying]
def probes(self, gid):
"""Return probes on gid."""
return [arbor.cable_probe_membrane_voltage('"center"', "tag_v"),
arbor.cable_probe_point_state(0, "deltasyn_homeostasis", "psc", "tag_psc_0"),
arbor.cable_probe_point_state(0, "deltasyn_homeostasis", "w_plastic", "tag_w_0"),
arbor.cable_probe_point_state(1, "deltasyn", "psc", "tag_psc_1")]
def global_properties(self, kind):
"""Return the global properties."""
assert kind == arbor.cell_kind.cable
return self.the_props
def main(config_file, catalogue, considered_neuron = 1):
"""Runs simulation and stores results.
Parameters
----------
config_file
Name of the JSON configuration file.
catalogue
Name of the custom Arbor catalogue to use.
considered_neuron
The neuron to monitor: 0 for neuron without homeostasis, 1 for neuron with
homeostasis.
"""
# set up the simulation
config = json.load(open(config_file, 'r'))
recipe = SingleRecipe(config, catalogue, considered_neuron)
context = arbor.context()
domains = arbor.partition_load_balance(recipe, context)
sim = arbor.simulation(recipe, context, domains)
sim.record(arbor.spike_recording.all)
reg_sched = arbor.regular_schedule(config["simulation"]["dt"]*U.ms)
# probes on gid = 0 (neuron with homeostasis)
handle_mem_with = sim.sample(0, "tag_v", reg_sched)
handle_g_steady_with = sim.sample((0, "tag_psc_0"), reg_sched)
handle_w_plastic_with = sim.sample((0, "tag_w_0"), reg_sched)
handle_g_varying_with = sim.sample((0, "tag_psc_1"), reg_sched)
# probes on gid = 1 (neuron without homeostasis)
handle_mem_without = sim.sample((1, "tag_v"), reg_sched)
handle_g_steady_without = sim.sample((1, "tag_psc_0"), reg_sched)
handle_w_plastic_without = sim.sample((1, "tag_w_0"), reg_sched)
handle_g_varying_without = sim.sample((1, "tag_psc_1"), reg_sched)
# run the simulation
sim.run(tfinal=config["simulation"]["runtime"]*U.ms,
dt=config["simulation"]["dt"]*U.ms)
# readout traces and spikes of neuron with homeostasis
if considered_neuron == 1:
data_mem, _ = sim.samples(handle_mem_with)[0]
data_g_steady, _ = sim.samples(handle_g_steady_with)[0]
data_w_plastic, _ = sim.samples(handle_w_plastic_with)[0]
data_g_varying, _ = sim.samples(handle_g_varying_with)[0]
# readout traces and spikes of neuron without homeostasis (control case)
else:
data_mem, _ = sim.samples(handle_mem_without)[0]
data_g_steady, _ = sim.samples(handle_g_steady_without)[0]
data_w_plastic, _ = sim.samples(handle_w_plastic_without)[0]
data_g_varying, _ = sim.samples(handle_g_varying_without)[0]
# collect data
data_stacked = numpy.column_stack(
[data_mem[:, 0], data_mem[:, 1], data_g_steady[:, 1], data_g_varying[:, 1], data_w_plastic[:, 1]])
spike_times = []
for s in sim.spikes():
if s['source']['gid'] == considered_neuron:
spike_times.append(s['time'])
return data_stacked, spike_times
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('config', help="name of config file")
parser.add_argument('num_trials', type=int, help="number of trials to consider")
parser.add_argument('considered_neuron', type=int, help="the type of neuron to consider")
parser.add_argument('--catalogue', help="name of catalogue file library", default="homeostasis-catalogue.so")
args = parser.parse_args()
num_trials = args.num_trials
data_stacked_sum = numpy.array([])
spike_times_all = []
for i in range(num_trials):
data_stacked, spike_times = main(args.config, args.catalogue, args.considered_neuron)
if data_stacked_sum.size == 0:
data_stacked_sum = numpy.array(data_stacked)
else:
data_stacked_sum += data_stacked
spike_times_all.extend(spike_times)
numpy.savetxt(f'arbor_traces_{args.considered_neuron}.dat', data_stacked_sum / num_trials)
numpy.savetxt(f'arbor_spikes_{args.considered_neuron}.dat', spike_times_all)