Skip to content

Commit c7bb379

Browse files
Fix links to other TensorFlow docs
1 parent bd7004e commit c7bb379

File tree

2 files changed

+7
-7
lines changed

2 files changed

+7
-7
lines changed

docs/get_started.ipynb

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -386,7 +386,7 @@
386386
"## Data Formats and Schema\n",
387387
"\n",
388388
"TFT Beam implementation accepts two different input data formats. The\n",
389-
"\"instance dict\" format (as seen in the example above and [simple.ipynb](https://www.tensorflow.org/tfx/tutorials/transform/simple) \u0026 [simple_example.py](https://github.com/tensorflow/transform/blob/master/examples/simple_example.py))\n",
389+
"\"instance dict\" format (as seen in the example above and [simple.ipynb](https://tensorflow.github.io/tfx/tutorials/transform/simple) \u0026 [simple_example.py](https://github.com/tensorflow/transform/blob/master/examples/simple_example.py))\n",
390390
"is an intuitive format and is suitable for small datasets while the TFXIO\n",
391391
"([Apache Arrow](https://arrow.apache.org)) format provides improved performance\n",
392392
"and is suitble for large datasets.\n",
@@ -562,7 +562,7 @@
562562
"## Compatibility with TensorFlow\n",
563563
"\n",
564564
"`tf.Transform` provides support for exporting the `transform_fn` as\n",
565-
"a SavedModel, see the [simple tutorial](https://www.tensorflow.org/tfx/tutorials/transform/simple) for an example. The default behavior before the `0.30` release\n",
565+
"a SavedModel, see the [simple tutorial](https://tensorflow.github.io/tfx/tutorials/transform/simple) for an example. The default behavior before the `0.30` release\n",
566566
"exported a TF 1.x SavedModel. Starting with the `0.30` release, the default\n",
567567
"behavior is to export a TF 2.x SavedModel unless TF 2.x behaviors are explicitly\n",
568568
"disabled (by calling `tf.compat.v1.disable_v2_behavior()`).\n",
@@ -753,7 +753,7 @@
753753
" from the type and shape information. One can get the Schema either by\n",
754754
" using a helper function we provide to translate from TF parsing specs\n",
755755
" (shown in this example), or by running\n",
756-
" [TensorFlow Data Validation](https://www.tensorflow.org/tfx/tutorials/data_validation/tfdv_basic).\n",
756+
" [TensorFlow Data Validation](https://tensorflow.github.io/tfx/tutorials/data_validation/tfdv_basic).\n",
757757
" - a list of column names, in the order they appear in the CSV file. Note\n",
758758
" that those names must match the feature names in the Schema."
759759
]
@@ -1047,7 +1047,7 @@
10471047
"id": "OllPVQJl2dRx"
10481048
},
10491049
"source": [
1050-
"To see how to use these artifacts refer to the [Advanced preprocessing tutorial](https://www.tensorflow.org/tfx/tutorials/transform/census)."
1050+
"To see how to use these artifacts refer to the [Advanced preprocessing tutorial](https://tensorflow.github.io/tfx/tutorials/transform/census)."
10511051
]
10521052
}
10531053
],

docs/tft_bestpractices.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@ This document is the first in a two-part series that explores the topic of data
44

55
This document assumes that you're familiar with [BigQuery](https://cloud.google.com/bigquery/docs), [Dataflow](https://cloud.google.com/dataflow/docs), [Vertex AI](https://cloud.google.com/vertex-ai/docs/start/introduction-unified-platform), and the TensorFlow [Keras](https://www.tensorflow.org/guide/keras/overview) API.
66

7-
The second document, [Data preprocessing for ML with Google Cloud](https://www.tensorflow.org/tfx/tutorials/transform/data_preprocessing_with_cloud), provides a step-by-step tutorial for how to implement a `tf.Transform` pipeline.
7+
The second document, [Data preprocessing for ML with Google Cloud](https://tensorflow.github.io/tfx/tutorials/transform/data_preprocessing_with_cloud), provides a step-by-step tutorial for how to implement a `tf.Transform` pipeline.
88

99
## Introduction
1010

@@ -261,7 +261,7 @@ The following table summarizes the data preprocessing options that this document
261261

262262
## What's next
263263

264-
- To implement a `tf.Transform` pipeline and run it using Dataflow, read part two of this series, [Data preprocessing for ML using TensorFlow Transform](https://www.tensorflow.org/tfx/tutorials/transform/data_preprocessing_with_cloud).
264+
- To implement a `tf.Transform` pipeline and run it using Dataflow, read part two of this series, [Data preprocessing for ML using TensorFlow Transform](https://tensorflow.github.io/tfx/tutorials/transform/data_preprocessing_with_cloud).
265265
- Take the Coursera specialization on ML with [TensorFlow on Google Cloud](https://www.coursera.org/specializations/machine-learning-tensorflow-gcp).
266266
- Learn about best practices for ML engineering in [Rules of ML](https://developers.google.com/machine-learning/guides/rules-of-ml/).
267-
- For more reference architectures, diagrams, and best practices, explore the [TFX Cloud Solutions](https://www.tensorflow.org/tfx/guide/solutions){track-type="tutorial" track-name="textLink" track-metadata-position="nextSteps"}.
267+
- For more reference architectures, diagrams, and best practices, explore the [TFX Cloud Solutions](https://tensorflow.github.io/tfx/guide/solutions){track-type="tutorial" track-name="textLink" track-metadata-position="nextSteps"}.

0 commit comments

Comments
 (0)