diff --git a/tensorflow_probability/g3doc/api_docs/python/_toc.yaml b/tensorflow_probability/g3doc/api_docs/python/_toc.yaml
index 977a4f10ad..74f8c50e9b 100644
--- a/tensorflow_probability/g3doc/api_docs/python/_toc.yaml
+++ b/tensorflow_probability/g3doc/api_docs/python/_toc.yaml
@@ -42,6 +42,8 @@ toc:
path: /probability/api_docs/python/tfp/bijectors/CholeskyToInvCholesky
- title: ConditionalBijector
path: /probability/api_docs/python/tfp/bijectors/ConditionalBijector
+ - title: DiscreteCosineTransform
+ path: /probability/api_docs/python/tfp/bijectors/DiscreteCosineTransform
- title: Exp
path: /probability/api_docs/python/tfp/bijectors/Exp
- title: FillTriangular
@@ -160,6 +162,10 @@ toc:
path: /probability/api_docs/python/tfp/distributions/GaussianProcessRegressionModel
- title: Geometric
path: /probability/api_docs/python/tfp/distributions/Geometric
+ - title: Gumbel
+ path: /probability/api_docs/python/tfp/distributions/Gumbel
+ - title: HalfCauchy
+ path: /probability/api_docs/python/tfp/distributions/HalfCauchy
- title: HalfNormal
path: /probability/api_docs/python/tfp/distributions/HalfNormal
- title: Independent
@@ -168,6 +174,8 @@ toc:
path: /probability/api_docs/python/tfp/distributions/InverseGamma
- title: InverseGammaWithSoftplusConcentrationRate
path: /probability/api_docs/python/tfp/distributions/InverseGammaWithSoftplusConcentrationRate
+ - title: InverseGaussian
+ path: /probability/api_docs/python/tfp/distributions/InverseGaussian
- title: kl_divergence
path: /probability/api_docs/python/tfp/distributions/kl_divergence
- title: Kumaraswamy
@@ -218,6 +226,8 @@ toc:
path: /probability/api_docs/python/tfp/distributions/normal_conjugates_known_scale_predictive
- title: OneHotCategorical
path: /probability/api_docs/python/tfp/distributions/OneHotCategorical
+ - title: Pareto
+ path: /probability/api_docs/python/tfp/distributions/Pareto
- title: percentile
path: /probability/api_docs/python/tfp/distributions/percentile
- title: Poisson
@@ -272,6 +282,8 @@ toc:
path: /probability/api_docs/python/tfp/distributions/VectorLaplaceDiag
- title: VectorSinhArcsinhDiag
path: /probability/api_docs/python/tfp/distributions/VectorSinhArcsinhDiag
+ - title: VonMises
+ path: /probability/api_docs/python/tfp/distributions/VonMises
- title: VonMisesFisher
path: /probability/api_docs/python/tfp/distributions/VonMisesFisher
- title: Wishart
@@ -312,12 +324,14 @@ toc:
path: /probability/api_docs/python/tfp/edward2/Gamma
- title: Geometric
path: /probability/api_docs/python/tfp/edward2/Geometric
- - title: get_interceptor
- path: /probability/api_docs/python/tfp/edward2/get_interceptor
+ - title: get_next_interceptor
+ path: /probability/api_docs/python/tfp/edward2/get_next_interceptor
- title: HalfNormal
path: /probability/api_docs/python/tfp/edward2/HalfNormal
- title: Independent
path: /probability/api_docs/python/tfp/edward2/Independent
+ - title: interceptable
+ path: /probability/api_docs/python/tfp/edward2/interceptable
- title: interception
path: /probability/api_docs/python/tfp/edward2/interception
- title: InverseGamma
@@ -364,6 +378,8 @@ toc:
path: /probability/api_docs/python/tfp/edward2/SinhArcsinh
- title: StudentT
path: /probability/api_docs/python/tfp/edward2/StudentT
+ - title: tape
+ path: /probability/api_docs/python/tfp/edward2/tape
- title: TransformedDistribution
path: /probability/api_docs/python/tfp/edward2/TransformedDistribution
- title: Uniform
@@ -398,6 +414,10 @@ toc:
path: /probability/api_docs/python/tfp/glm/fit
- title: fit_one_step
path: /probability/api_docs/python/tfp/glm/fit_one_step
+ - title: fit_sparse
+ path: /probability/api_docs/python/tfp/glm/fit_sparse
+ - title: fit_sparse_one_step
+ path: /probability/api_docs/python/tfp/glm/fit_sparse_one_step
- title: GammaExp
path: /probability/api_docs/python/tfp/glm/GammaExp
- title: GammaSoftplus
@@ -414,6 +434,8 @@ toc:
path: /probability/api_docs/python/tfp/glm/Poisson
- title: PoissonSoftplus
path: /probability/api_docs/python/tfp/glm/PoissonSoftplus
+ - title: soft_threshold
+ path: /probability/api_docs/python/tfp/glm/soft_threshold
- title: tfp.layers
section:
- title: Overview
@@ -446,6 +468,8 @@ toc:
section:
- title: Overview
path: /probability/api_docs/python/tfp/math
+ - title: custom_gradient
+ path: /probability/api_docs/python/tfp/math/custom_gradient
- title: diag_jacobian
path: /probability/api_docs/python/tfp/math/diag_jacobian
- title: matvecmul
@@ -542,6 +566,24 @@ toc:
path: /probability/api_docs/python/tfp/positive_semidefinite_kernels/MaternThreeHalves
- title: PositiveSemidefiniteKernel
path: /probability/api_docs/python/tfp/positive_semidefinite_kernels/PositiveSemidefiniteKernel
+ - title: tfp.sts
+ section:
+ - title: Overview
+ path: /probability/api_docs/python/tfp/sts
+ - title: AdditiveStateSpaceModel
+ path: /probability/api_docs/python/tfp/sts/AdditiveStateSpaceModel
+ - title: LocalLinearTrend
+ path: /probability/api_docs/python/tfp/sts/LocalLinearTrend
+ - title: LocalLinearTrendStateSpaceModel
+ path: /probability/api_docs/python/tfp/sts/LocalLinearTrendStateSpaceModel
+ - title: Seasonal
+ path: /probability/api_docs/python/tfp/sts/Seasonal
+ - title: SeasonalStateSpaceModel
+ path: /probability/api_docs/python/tfp/sts/SeasonalStateSpaceModel
+ - title: StructuralTimeSeries
+ path: /probability/api_docs/python/tfp/sts/StructuralTimeSeries
+ - title: Sum
+ path: /probability/api_docs/python/tfp/sts/Sum
- title: tfp.trainable_distributions
section:
- title: Overview
diff --git a/tensorflow_probability/g3doc/api_docs/python/index.md b/tensorflow_probability/g3doc/api_docs/python/index.md
index 96813a9ac6..64e0562456 100644
--- a/tensorflow_probability/g3doc/api_docs/python/index.md
+++ b/tensorflow_probability/g3doc/api_docs/python/index.md
@@ -12,6 +12,7 @@
* tfp.bijectors.CholeskyOuterProduct
* tfp.bijectors.CholeskyToInvCholesky
* tfp.bijectors.ConditionalBijector
+* tfp.bijectors.DiscreteCosineTransform
* tfp.bijectors.Exp
* tfp.bijectors.FillTriangular
* tfp.bijectors.Gumbel
@@ -65,10 +66,13 @@
* tfp.distributions.GaussianProcess
* tfp.distributions.GaussianProcessRegressionModel
* tfp.distributions.Geometric
+* tfp.distributions.Gumbel
+* tfp.distributions.HalfCauchy
* tfp.distributions.HalfNormal
* tfp.distributions.Independent
* tfp.distributions.InverseGamma
* tfp.distributions.InverseGammaWithSoftplusConcentrationRate
+* tfp.distributions.InverseGaussian
* tfp.distributions.Kumaraswamy
* tfp.distributions.LKJ
* tfp.distributions.Laplace
@@ -89,6 +93,7 @@
* tfp.distributions.Normal
* tfp.distributions.NormalWithSoftplusScale
* tfp.distributions.OneHotCategorical
+* tfp.distributions.Pareto
* tfp.distributions.Poisson
* tfp.distributions.PoissonLogNormalQuadratureCompound
* tfp.distributions.QuantizedDistribution
@@ -108,6 +113,7 @@
* tfp.distributions.VectorExponentialDiag
* tfp.distributions.VectorLaplaceDiag
* tfp.distributions.VectorSinhArcsinhDiag
+* tfp.distributions.VonMises
* tfp.distributions.VonMisesFisher
* tfp.distributions.Wishart
* tfp.distributions.assign_log_moving_mean_exp
@@ -176,9 +182,11 @@
* tfp.edward2.VectorSinhArcsinhDiag
* tfp.edward2.Wishart
* tfp.edward2.as_random_variable
-* tfp.edward2.get_interceptor
+* tfp.edward2.get_next_interceptor
+* tfp.edward2.interceptable
* tfp.edward2.interception
* tfp.edward2.make_log_joint_fn
+* tfp.edward2.tape
* tfp.glm
* tfp.glm.Bernoulli
* tfp.glm.BernoulliNormalCDF
@@ -195,6 +203,9 @@
* tfp.glm.convergence_criteria_small_relative_norm_weights_change
* tfp.glm.fit
* tfp.glm.fit_one_step
+* tfp.glm.fit_sparse
+* tfp.glm.fit_sparse_one_step
+* tfp.glm.soft_threshold
* tfp.layers
* tfp.layers.Convolution1DFlipout
* tfp.layers.Convolution1DReparameterization
@@ -209,6 +220,7 @@
* tfp.layers.default_mean_field_normal_fn
* tfp.layers.default_multivariate_normal_fn
* tfp.math
+* tfp.math.custom_gradient
* tfp.math.diag_jacobian
* tfp.math.matvecmul
* tfp.math.pinv
@@ -252,6 +264,14 @@
* tfp.positive_semidefinite_kernels.MaternOneHalf
* tfp.positive_semidefinite_kernels.MaternThreeHalves
* tfp.positive_semidefinite_kernels.PositiveSemidefiniteKernel
+* tfp.sts
+* tfp.sts.AdditiveStateSpaceModel
+* tfp.sts.LocalLinearTrend
+* tfp.sts.LocalLinearTrendStateSpaceModel
+* tfp.sts.Seasonal
+* tfp.sts.SeasonalStateSpaceModel
+* tfp.sts.StructuralTimeSeries
+* tfp.sts.Sum
* tfp.trainable_distributions
* tfp.trainable_distributions.bernoulli
* tfp.trainable_distributions.multivariate_normal_tril
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp.md b/tensorflow_probability/g3doc/api_docs/python/tfp.md
index b548f2d65b..8fd270692c 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp.md
@@ -1,5 +1,7 @@
__version__
__all__
__init__
dtype
__init__
forward
adjoint
dtype
forward_min_event_ndims
graph_parents
inverse_min_event_ndims
is_constant_jacobian
name
scale
shift
validate_args
__init__
__init__
adjoint
dtype
forward_min_event_ndims
graph_parents
inverse_min_event_ndims
is_constant_jacobian
name
scale
shift
validate_args
forward
__init__
adjoint
__init__
forward
__init__
dtype
__init__
forward
__init__
dtype
__init__
forward
dtype
forward_min_event_ndims
graph_parents
inverse_min_event_ndims
is_constant_jacobian
name
validate_args
__init__
__init__
dtype
forward_min_event_ndims
graph_parents
inverse_min_event_ndims
is_constant_jacobian
name
validate_args
forward
__init__
bijectors
__init__
forward
__init__
dtype
__init__
forward
__init__
dtype
__init__
forward
dtype
forward_min_event_ndims
graph_parents
inverse_min_event_ndims
is_constant_jacobian
name
validate_args
__init__
__init__
dtype
forward_min_event_ndims
graph_parents
inverse_min_event_ndims
is_constant_jacobian
name
validate_args
forward
__init__
dtype
forward_min_event_ndims
graph_parents
inverse_min_event_ndims
is_constant_jacobian
name
validate_args
forward
forward_event_shape
forward_event_shape_tensor
forward_log_det_jacobian
inverse
inverse_event_shape
inverse_event_shape_tensor
inverse_log_det_jacobian
__init__
dtype
__init__
forward
__init__
dtype
__init__
forward
__init__
dtype
__init__
forward
__init__
dtype
__init__
forward
dtype
forward_min_event_ndims
graph_parents
inverse_min_event_ndims
is_constant_jacobian
name
validate_args
__init__
__init__
dtype
forward_min_event_ndims
graph_parents
inverse_min_event_ndims
is_constant_jacobian
name
validate_args
forward
__init__
bijector
__init__
forward
__init__
concentration0
__init__
forward
__init__
dtype
__init__
forward
__init__
dtype
__init__
forward
__init__
axis
__init__
forward
__init__
dtype
__init__
forward
__init__
dtype
__init__
forward
__init__
dtype
__init__
forward
__init__
bijectors
__init__
forward
__init__
dtype
__init__
forward
__init__
dtype
__init__
forward
__init__
dtype
__init__
forward
__init__
dtype
__init__
forward
__init__
dtype
__init__
forward
__init__
dtype
__init__
forward
__init__
dtype
__init__
forward
__init__
dtype
__init__
forward
__init__
dtype
__init__
forward
__init__
concentration
__init__
forward
FULLY_REPARAMETERIZED
NOT_REPARAMETERIZED
__all__
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -492,7 +495,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/BatchReshape.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/BatchReshape.md
index a5a1ea9ca8..d14ae127fa 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/BatchReshape.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/BatchReshape.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -424,7 +427,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Bernoulli.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Bernoulli.md
index 493067fa43..02d8f58051 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Bernoulli.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Bernoulli.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -402,7 +405,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Beta.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Beta.md
index 3585767041..5cfe3c99a5 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Beta.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Beta.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -497,7 +503,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/BetaWithSoftplusConcentration.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/BetaWithSoftplusConcentration.md
index 1d36254ead..bc22dd05e9 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/BetaWithSoftplusConcentration.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/BetaWithSoftplusConcentration.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -383,7 +386,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Binomial.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Binomial.md
index b70df73bdc..c22806660e 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Binomial.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Binomial.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -465,7 +468,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Categorical.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Categorical.md
index 7d5f31dc8a..1ce0ffbf34 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Categorical.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Categorical.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -486,7 +489,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Cauchy.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Cauchy.md
index 44cc021cee..657947d12d 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Cauchy.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Cauchy.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
loc
name
scale
validate_args
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -447,7 +450,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Chi2.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Chi2.md
index 7033defb1e..7dfc5a110f 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Chi2.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Chi2.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -415,7 +418,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Chi2WithAbsDf.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Chi2WithAbsDf.md
index 690c3fd62c..d7d7901dfc 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Chi2WithAbsDf.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Chi2WithAbsDf.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -376,7 +379,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/ConditionalDistribution.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/ConditionalDistribution.md
index 766e57b39a..46f84e1218 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/ConditionalDistribution.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/ConditionalDistribution.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -383,7 +386,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/ConditionalTransformedDistribution.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/ConditionalTransformedDistribution.md
index 035c7e7a4a..57c3e8aa0e 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/ConditionalTransformedDistribution.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/ConditionalTransformedDistribution.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -378,7 +381,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Deterministic.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Deterministic.md
index d9933298f1..3616841862 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Deterministic.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Deterministic.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -441,7 +444,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Dirichlet.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Dirichlet.md
index 4eed558082..22e47dcd0d 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Dirichlet.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Dirichlet.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -492,7 +498,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/DirichletMultinomial.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/DirichletMultinomial.md
index f675adf880..cd9e4769a6 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/DirichletMultinomial.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/DirichletMultinomial.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -523,7 +526,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Distribution.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Distribution.md
index 3a43033830..dea783e2fd 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Distribution.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Distribution.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -527,7 +530,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/ExpRelaxedOneHotCategorical.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/ExpRelaxedOneHotCategorical.md
index 8d49ad3ba0..857d65ef6b 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/ExpRelaxedOneHotCategorical.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/ExpRelaxedOneHotCategorical.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -499,7 +502,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Exponential.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Exponential.md
index c5acf54e48..67e472fe1a 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Exponential.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Exponential.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -413,7 +416,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/ExponentialWithSoftplusRate.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/ExponentialWithSoftplusRate.md
index c689e9f3c9..b689cc5582 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/ExponentialWithSoftplusRate.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/ExponentialWithSoftplusRate.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -371,7 +374,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Gamma.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Gamma.md
index 28b2c507cd..2c47423bb7 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Gamma.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Gamma.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -466,7 +472,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/GammaGamma.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/GammaGamma.md
index 41f98694b5..9263014a91 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/GammaGamma.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/GammaGamma.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -436,7 +445,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/GammaWithSoftplusConcentrationRate.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/GammaWithSoftplusConcentrationRate.md
index 17e24be5ea..17e518bf46 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/GammaWithSoftplusConcentrationRate.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/GammaWithSoftplusConcentrationRate.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -372,7 +375,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/GaussianProcess.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/GaussianProcess.md
index dc28e33117..6e4d02cf8e 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/GaussianProcess.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/GaussianProcess.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -601,7 +604,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/GaussianProcessRegressionModel.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/GaussianProcessRegressionModel.md
index 5cbff6b640..06f439868b 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/GaussianProcessRegressionModel.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/GaussianProcessRegressionModel.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -783,7 +786,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Geometric.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Geometric.md
index 5e9986f085..dac99e1878 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Geometric.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Geometric.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -411,7 +414,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Gumbel.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Gumbel.md
new file mode 100644
index 0000000000..5903ce2751
--- /dev/null
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Gumbel.md
@@ -0,0 +1,811 @@
+__init__
allow_nan_stats
batch_shape
bijector
distribution
dtype
event_shape
loc
name
parameters
reparameterization_type
scale
validate_args
batch_shape_tensor
cdf
copy
covariance
cross_entropy
tfp.distributions.Distribution
instance.
+* `name`: Python `str` prepended to names of ops created by this function.
+
+
+#### Returns:
+
+* `cross_entropy`: `self.dtype` `Tensor` with shape `[B1, ..., Bn]`
+ representing `n` different calculations of (Shanon) cross entropy.
+
+entropy
event_shape_tensor
is_scalar_batch
is_scalar_event
kl_divergence
tfp.distributions.Distribution
instance.
+* `name`: Python `str` prepended to names of ops created by this function.
+
+
+#### Returns:
+
+* `kl_divergence`: `self.dtype` `Tensor` with shape `[B1, ..., Bn]`
+ representing `n` different calculations of the Kullback-Leibler
+ divergence.
+
+log_cdf
log_prob
log_survival_function
mean
mode
param_shapes
param_static_shapes
prob
quantile
sample
stddev
survival_function
variance
__init__
allow_nan_stats
batch_shape
dtype
event_shape
loc
name
parameters
reparameterization_type
scale
validate_args
batch_shape_tensor
cdf
copy
covariance
cross_entropy
tfp.distributions.Distribution
instance.
+* `name`: Python `str` prepended to names of ops created by this function.
+
+
+#### Returns:
+
+* `cross_entropy`: `self.dtype` `Tensor` with shape `[B1, ..., Bn]`
+ representing `n` different calculations of (Shanon) cross entropy.
+
+entropy
event_shape_tensor
is_scalar_batch
is_scalar_event
kl_divergence
tfp.distributions.Distribution
instance.
+* `name`: Python `str` prepended to names of ops created by this function.
+
+
+#### Returns:
+
+* `kl_divergence`: `self.dtype` `Tensor` with shape `[B1, ..., Bn]`
+ representing `n` different calculations of the Kullback-Leibler
+ divergence.
+
+log_cdf
log_prob
log_survival_function
mean
mode
param_shapes
param_static_shapes
prob
quantile
sample
stddev
survival_function
variance
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -422,7 +425,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Independent.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Independent.md
index 492a9e230b..b766e85ffd 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Independent.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Independent.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -449,7 +452,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/InverseGamma.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/InverseGamma.md
index 23dd1b15e1..0837a4a2cc 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/InverseGamma.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/InverseGamma.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -463,7 +474,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/InverseGammaWithSoftplusConcentrationRate.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/InverseGammaWithSoftplusConcentrationRate.md
index a625923b28..151084e9b0 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/InverseGammaWithSoftplusConcentrationRate.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/InverseGammaWithSoftplusConcentrationRate.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -372,7 +375,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/InverseGaussian.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/InverseGaussian.md
new file mode 100644
index 0000000000..b865f3f774
--- /dev/null
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/InverseGaussian.md
@@ -0,0 +1,778 @@
+__init__
allow_nan_stats
batch_shape
concentration
dtype
event_shape
loc
name
parameters
reparameterization_type
validate_args
batch_shape_tensor
cdf
copy
covariance
cross_entropy
tfp.distributions.Distribution
instance.
+* `name`: Python `str` prepended to names of ops created by this function.
+
+
+#### Returns:
+
+* `cross_entropy`: `self.dtype` `Tensor` with shape `[B1, ..., Bn]`
+ representing `n` different calculations of (Shanon) cross entropy.
+
+entropy
event_shape_tensor
is_scalar_batch
is_scalar_event
kl_divergence
tfp.distributions.Distribution
instance.
+* `name`: Python `str` prepended to names of ops created by this function.
+
+
+#### Returns:
+
+* `kl_divergence`: `self.dtype` `Tensor` with shape `[B1, ..., Bn]`
+ representing `n` different calculations of the Kullback-Leibler
+ divergence.
+
+log_cdf
log_prob
log_survival_function
mean
mode
param_shapes
param_static_shapes
prob
quantile
sample
stddev
survival_function
variance
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -461,7 +464,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/LKJ.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/LKJ.md
index 937614b990..4a35d392c2 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/LKJ.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/LKJ.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -418,7 +421,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Laplace.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Laplace.md
index e885e8e176..58a3019774 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Laplace.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Laplace.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -419,7 +422,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/LaplaceWithSoftplusScale.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/LaplaceWithSoftplusScale.md
index faa0c9b033..94f95a2b43 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/LaplaceWithSoftplusScale.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/LaplaceWithSoftplusScale.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -372,7 +375,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/LinearGaussianStateSpaceModel.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/LinearGaussianStateSpaceModel.md
index 453a3ab5a3..6d858bd5f0 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/LinearGaussianStateSpaceModel.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/LinearGaussianStateSpaceModel.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -467,6 +471,15 @@ forward_filter(x)
Run a Kalman filter over a provided sequence of outputs.
+Note that the returned values `filtered_means`, `predicted_means`, and
+`observation_means` depend on the observed time series `x`, while the
+corresponding covariances are independent of the observed series; i.e., they
+depend only on the model itself. This means that the mean values have shape
+`concat([sample_shape(x), batch_shape, [num_timesteps,
+{latent/observation}_size]])`, while the covariances have shape
+`concat[(batch_shape, [num_timesteps, {latent/observation}_size,
+{latent/observation}_size]])`, which does not depend on the sample shape.
+
#### Args:
* `x`: a float-type `Tensor` with rightmost dimensions
@@ -483,21 +496,22 @@ Run a Kalman filter over a provided sequence of outputs.
of shape `sample_shape(x) + batch_shape + [num_timesteps].`
* `filtered_means`: Means of the per-timestep filtered marginal
distributions p(z_t | x_{:t}), as a Tensor of shape
- `batch_shape + [num_timesteps, latent_size]`.
+ `sample_shape(x) + batch_shape + [num_timesteps, latent_size]`.
* `filtered_covs`: Covariances of the per-timestep filtered marginal
distributions p(z_t | x_{:t}), as a Tensor of shape
`batch_shape + [num_timesteps, latent_size, latent_size]`.
* `predicted_means`: Means of the per-timestep predictive
distributions over latent states, p(z_{t+1} | x_{:t}), as a
- Tensor of shape `batch_shape + [num_timesteps, latent_size]`.
+ Tensor of shape `sample_shape(x) + batch_shape +
+ [num_timesteps, latent_size]`.
* `predicted_covs`: Covariances of the per-timestep predictive
distributions over latent states, p(z_{t+1} | x_{:t}), as a
Tensor of shape `batch_shape + [num_timesteps, latent_size,
latent_size]`.
* `observation_means`: Means of the per-timestep predictive
distributions over observations, p(x_{t} | x_{:t-1}), as a
- Tensor of shape `batch_shape + [num_timesteps,
- observation_size]`.
+ Tensor of shape `sample_shape(x) + batch_shape +
+ [num_timesteps, observation_size]`.
* `observation_covs`: Covariances of the per-timestep predictive
distributions over observations, p(x_{t} | x_{:t-1}), as a
Tensor of shape `batch_shape + [num_timesteps,
@@ -563,7 +577,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/LogNormal.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/LogNormal.md
index 5285e60ea1..c59cb1630a 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/LogNormal.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/LogNormal.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -402,7 +405,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Logistic.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Logistic.md
index 03d9e966cc..31192d7318 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Logistic.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Logistic.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -448,7 +451,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Mixture.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Mixture.md
index 9c2de894f1..9f6dcf2a17 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Mixture.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Mixture.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -497,7 +500,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/MixtureSameFamily.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/MixtureSameFamily.md
index 6ed2d87dc8..cb744f33fe 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/MixtureSameFamily.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/MixtureSameFamily.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -462,7 +465,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Multinomial.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Multinomial.md
index 7654d3f0a9..f51c75c240 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Multinomial.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Multinomial.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -496,7 +499,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/MultivariateNormalDiag.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/MultivariateNormalDiag.md
index 7f6679188c..8276ddc3fb 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/MultivariateNormalDiag.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/MultivariateNormalDiag.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -534,7 +537,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/MultivariateNormalDiagPlusLowRank.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/MultivariateNormalDiagPlusLowRank.md
index bd79ce4bbf..9144c9fae3 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/MultivariateNormalDiagPlusLowRank.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/MultivariateNormalDiagPlusLowRank.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -557,7 +560,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/MultivariateNormalDiagWithSoftplusScale.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/MultivariateNormalDiagWithSoftplusScale.md
index a754825593..2783bc1b9e 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/MultivariateNormalDiagWithSoftplusScale.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/MultivariateNormalDiagWithSoftplusScale.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -382,7 +385,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/MultivariateNormalFullCovariance.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/MultivariateNormalFullCovariance.md
index 4fa6197660..9ba5c21222 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/MultivariateNormalFullCovariance.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/MultivariateNormalFullCovariance.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -496,7 +499,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/MultivariateNormalLinearOperator.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/MultivariateNormalLinearOperator.md
index cfc1712611..7bf1a74767 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/MultivariateNormalLinearOperator.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/MultivariateNormalLinearOperator.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -489,7 +492,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/MultivariateNormalTriL.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/MultivariateNormalTriL.md
index bbf02e9b70..9078ef47c8 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/MultivariateNormalTriL.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/MultivariateNormalTriL.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -521,7 +524,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/NegativeBinomial.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/NegativeBinomial.md
index 1be003e7ab..30b2902c77 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/NegativeBinomial.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/NegativeBinomial.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -426,7 +429,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Normal.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Normal.md
index ce109c094c..195788f5e1 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Normal.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Normal.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -451,7 +457,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/NormalWithSoftplusScale.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/NormalWithSoftplusScale.md
index 9eddd1b5e2..41f545ef37 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/NormalWithSoftplusScale.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/NormalWithSoftplusScale.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -372,7 +375,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/OneHotCategorical.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/OneHotCategorical.md
index 21e2f40411..6a7f6d83f7 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/OneHotCategorical.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/OneHotCategorical.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -448,7 +451,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Pareto.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Pareto.md
new file mode 100644
index 0000000000..56406d31f4
--- /dev/null
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Pareto.md
@@ -0,0 +1,762 @@
+__init__
allow_nan_stats
batch_shape
concentration
dtype
event_shape
name
parameters
reparameterization_type
scale
validate_args
batch_shape_tensor
cdf
copy
covariance
cross_entropy
tfp.distributions.Distribution
instance.
+* `name`: Python `str` prepended to names of ops created by this function.
+
+
+#### Returns:
+
+* `cross_entropy`: `self.dtype` `Tensor` with shape `[B1, ..., Bn]`
+ representing `n` different calculations of (Shanon) cross entropy.
+
+entropy
event_shape_tensor
is_scalar_batch
is_scalar_event
kl_divergence
tfp.distributions.Distribution
instance.
+* `name`: Python `str` prepended to names of ops created by this function.
+
+
+#### Returns:
+
+* `kl_divergence`: `self.dtype` `Tensor` with shape `[B1, ..., Bn]`
+ representing `n` different calculations of the Kullback-Leibler
+ divergence.
+
+log_cdf
log_prob
log_survival_function
mean
mode
param_shapes
param_static_shapes
prob
quantile
sample
stddev
survival_function
variance
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -421,7 +411,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -452,19 +442,6 @@ Often, a numerical approximation can be used for `log_cdf(x)` that yields
a more accurate answer than simply taking the logarithm of the `cdf` when
`x << -1`.
-
-Additional documentation from `Poisson`:
-
-The Poisson distribution is technically only defined for non-negative integer
-values. When `validate_args=False`, non-integral inputs trigger an assertion.
-
-When `validate_args=False` calculations are otherwise unchanged despite
-integral or non-integral inputs.
-
-When `validate_args=False`, evaluating the pmf at non-integral values,
-corresponds to evaluations of an unnormalized distribution, that does not
-correspond to evaluations of the cdf.
-
#### Args:
* `value`: `float` or `double` `Tensor`.
@@ -487,19 +464,6 @@ log_prob(
Log probability density/mass function.
-
-Additional documentation from `Poisson`:
-
-The Poisson distribution is technically only defined for non-negative integer
-values. When `validate_args=False`, non-integral inputs trigger an assertion.
-
-When `validate_args=False` calculations are otherwise unchanged despite
-integral or non-integral inputs.
-
-When `validate_args=False`, evaluating the pmf at non-integral values,
-corresponds to evaluations of an unnormalized distribution, that does not
-correspond to evaluations of the cdf.
-
#### Args:
* `value`: `float` or `double` `Tensor`.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/PoissonLogNormalQuadratureCompound.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/PoissonLogNormalQuadratureCompound.md
index 49cffc658a..63086bbd88 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/PoissonLogNormalQuadratureCompound.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/PoissonLogNormalQuadratureCompound.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -482,7 +485,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/QuantizedDistribution.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/QuantizedDistribution.md
index a7a0c8a7d0..98aac9cb7c 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/QuantizedDistribution.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/QuantizedDistribution.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -524,7 +527,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/RegisterKL.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/RegisterKL.md
index 7f0b3e6f11..1bc8a2d6ad 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/RegisterKL.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/RegisterKL.md
@@ -1,5 +1,6 @@
__init__
__init__
__call__
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -513,7 +516,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/RelaxedOneHotCategorical.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/RelaxedOneHotCategorical.md
index a8a48ed981..0a6af9a2d5 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/RelaxedOneHotCategorical.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/RelaxedOneHotCategorical.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -465,7 +468,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/ReparameterizationType.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/ReparameterizationType.md
index 1c7ad46617..2597b7cf2e 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/ReparameterizationType.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/ReparameterizationType.md
@@ -1,5 +1,6 @@
__init__
__init__
__eq__
original_seed
salt
__init__
__init__
original_seed
salt
__call__
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -482,7 +485,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/StudentT.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/StudentT.md
index 5848f2eec6..b3e599043f 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/StudentT.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/StudentT.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -499,7 +503,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/StudentTWithAbsDfSoftplusScale.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/StudentTWithAbsDfSoftplusScale.md
index 97bd58fc56..c7e728dbfa 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/StudentTWithAbsDfSoftplusScale.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/StudentTWithAbsDfSoftplusScale.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -378,7 +381,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/TransformedDistribution.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/TransformedDistribution.md
index dceae64e91..fa226bce29 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/TransformedDistribution.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/TransformedDistribution.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -498,7 +497,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/TruncatedNormal.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/TruncatedNormal.md
index d2fd7cd70a..11863f012b 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/TruncatedNormal.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/TruncatedNormal.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -455,7 +458,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Uniform.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Uniform.md
index b5cc362d0e..d4a3f3b96f 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Uniform.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Uniform.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -432,7 +435,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/VectorDeterministic.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/VectorDeterministic.md
index 469657ede2..7b239f2e05 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/VectorDeterministic.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/VectorDeterministic.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -445,7 +448,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/VectorDiffeomixture.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/VectorDiffeomixture.md
index f33a97d76e..851a4ea0cc 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/VectorDiffeomixture.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/VectorDiffeomixture.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -568,7 +571,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/VectorExponentialDiag.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/VectorExponentialDiag.md
index 022e0e1e30..e94f7ecc68 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/VectorExponentialDiag.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/VectorExponentialDiag.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -518,7 +521,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/VectorLaplaceDiag.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/VectorLaplaceDiag.md
index 972de95b9e..151a30dfc2 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/VectorLaplaceDiag.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/VectorLaplaceDiag.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -553,7 +556,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/VectorSinhArcsinhDiag.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/VectorSinhArcsinhDiag.md
index 9129ad7e62..d4d81fb1de 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/VectorSinhArcsinhDiag.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/VectorSinhArcsinhDiag.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -515,7 +518,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/VonMises.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/VonMises.md
new file mode 100644
index 0000000000..df7eb7cae9
--- /dev/null
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/VonMises.md
@@ -0,0 +1,807 @@
+__init__
allow_nan_stats
batch_shape
concentration
dtype
event_shape
loc
name
parameters
reparameterization_type
validate_args
batch_shape_tensor
cdf
copy
covariance
cross_entropy
tfp.distributions.Distribution
instance.
+* `name`: Python `str` prepended to names of ops created by this function.
+
+
+#### Returns:
+
+* `cross_entropy`: `self.dtype` `Tensor` with shape `[B1, ..., Bn]`
+ representing `n` different calculations of (Shanon) cross entropy.
+
+entropy
event_shape_tensor
is_scalar_batch
is_scalar_event
kl_divergence
tfp.distributions.Distribution
instance.
+* `name`: Python `str` prepended to names of ops created by this function.
+
+
+#### Returns:
+
+* `kl_divergence`: `self.dtype` `Tensor` with shape `[B1, ..., Bn]`
+ representing `n` different calculations of the Kullback-Leibler
+ divergence.
+
+log_cdf
log_prob
log_survival_function
mean
mode
param_shapes
param_static_shapes
prob
quantile
sample
stddev
survival_function
variance
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -455,7 +458,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Wishart.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Wishart.md
index 02660cb55a..ea4b341a71 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Wishart.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/Wishart.md
@@ -1,5 +1,6 @@
__init__
allow_nan_stats
__init__
batch_shape_tensor
tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
@@ -474,7 +477,7 @@ denotes (Shanon) cross entropy, and `H[.]` denotes (Shanon) entropy.
#### Args:
-* `other`: `tf.distributions.Distribution` instance.
+* `other`: tfp.distributions.Distribution
instance.
* `name`: Python `str` prepended to names of ops created by this function.
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/assign_log_moving_mean_exp.md b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/assign_log_moving_mean_exp.md
index f801861ddb..d4b427e564 100644
--- a/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/assign_log_moving_mean_exp.md
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/distributions/assign_log_moving_mean_exp.md
@@ -1,5 +1,6 @@
distribution
dtype
sample_shape
shape
value
__init__
__init__
distribution
dtype
sample_shape
shape
value
__abs__
__init__
is_canonical
__init__
__call__
__init__
is_canonical
__init__
__call__
distribution_fn
is_canonical
linear_model_to_mean_fn
name
__init__
__init__
distribution_fn
is_canonical
linear_model_to_mean_fn
name
__call__
tfp.glm.fit
, these functions are used to find the best fitting
weights for given model matrix ("X") and responses ("Y").
+__init__
is_canonical
__init__
__call__
__init__
is_canonical
__init__
__call__
__init__
is_canonical
__init__
__call__
__init__
is_canonical
__init__
__call__
__init__
is_canonical
__init__
__call__
__init__
is_canonical
__init__
__call__
__init__
is_canonical
__init__
__call__
__init__
is_canonical
__init__
__call__
__init__
is_canonical
__init__
__call__
tfp.glm.ExponentialFamily
-like instance, which specifies the link
+ function and distribution of the GLM, and thus characterizes the negative
+ log-likelihood which will be minimized. Must have sufficient statistic
+ equal to the response, that is, `T(y) = y`.
+* `model_coefficients_start`: vector-shaped, `float` `Tensor` with the same
+ dtype as `model_matrix`, representing the initial values of the
+ coefficients for the GLM regression. Has shape `[n]` where `model_matrix`
+ has shape `[N, n]`.
+* `tolerance`: scalar, `float` `Tensor` representing the tolerance for each
+ optiization step; see the `tolerance` argument of `fit_sparse_one_step`.
+* `l1_regularizer`: scalar, `float` `Tensor` representing the weight of the L1
+ regularization term.
+* `l2_regularizer`: scalar, `float` `Tensor` representing the weight of the L2
+ regularization term.
+ Default value: `None` (i.e., no L2 regularization).
+* `maximum_iterations`: Python integer specifying maximum number of iterations
+ of the outer loop of the optimizer (i.e., maximum number of calls to
+ `fit_sparse_one_step`). After this many iterations of the outer loop, the
+ algorithm will terminate even if the return value `model_coefficients` has
+ not converged.
+ Default value: `1`.
+* `maximum_full_sweeps_per_iteration`: Python integer specifying the maximum
+ number of coordinate descent sweeps allowed in each iteration.
+ Default value: `1`.
+* `learning_rate`: scalar, `float` `Tensor` representing a multiplicative factor
+ used to dampen the proximal gradient descent steps.
+ Default value: `None` (i.e., factor is conceptually `1`).
+* `model_coefficients_update_var`: `Variable` with the same shape and dtype as
+ `model_coefficients_start`. Used to store the current value of
+ `model_coefficients_update`.
+ Default value: `None` (i.e., a new `Variable` will be created).
+* `name`: Python string representing the name of the TensorFlow operation.
+ The default name is `"fit_sparse"`.
+
+Note that this function does not support batched inputs.
+
+
+#### Returns:
+
+* `model_coefficients`: `Tensor` of the same shape and dtype as
+ `model_coefficients_start`, representing the computed model coefficients
+ which minimize the regularized negative log-likelihood.
+* `is_converged`: scalar, `bool` `Tensor` indicating whether the minimization
+ procedure converged within the specified number of iterations. Here
+ convergence means that an iteration of the inner loop
+ (`fit_sparse_one_step`) returns `True` for its `is_converged` output
+ value.
+* `iter`: scalar, `int` `Tensor` indicating the actual number of iterations of
+ the outer loop of the optimizer completed (i.e., number of calls to
+ `fit_sparse_one_step` before achieving convergence).
+
+#### Example
+
+```python
+from __future__ import print_function
+import numpy as np
+import tensorflow as tf
+import tensorflow_probability as tfp
+tfd = tfp.distributions
+
+def make_dataset(n, d, link, scale=1., dtype=np.float32):
+ model_coefficients = tfd.Uniform(
+ low=np.array(-1, dtype), high=np.array(1, dtype)).sample(
+ d, seed=42)
+ radius = np.sqrt(2.)
+ model_coefficients *= radius / tf.linalg.norm(model_coefficients)
+ mask = tf.random_shuffle(tf.range(d)) < tf.to_int32(0.5 * tf.to_float(d))
+ model_coefficients = tf.where(mask, model_coefficients,
+ tf.zeros_like(model_coefficients))
+ model_matrix = tfd.Normal(
+ loc=np.array(0, dtype), scale=np.array(1, dtype)).sample(
+ [n, d], seed=43)
+ scale = tf.convert_to_tensor(scale, dtype)
+ linear_response = tf.matmul(model_matrix,
+ model_coefficients[..., tf.newaxis])[..., 0]
+ if link == 'linear':
+ response = tfd.Normal(loc=linear_response, scale=scale).sample(seed=44)
+ elif link == 'probit':
+ response = tf.cast(
+ tfd.Normal(loc=linear_response, scale=scale).sample(seed=44) > 0,
+ dtype)
+ elif link == 'logit':
+ response = tfd.Bernoulli(logits=linear_response).sample(seed=44)
+* `else`: raise ValueError('unrecognized true link: {}'.format(link))
+ return model_matrix, response, model_coefficients, mask
+
+with tf.Session() as sess:
+ x_, y_, model_coefficients_true_, _ = sess.run(make_dataset(
+ n=int(1e5), d=100, link='probit'))
+
+ model = tfp.glm.Bernoulli()
+ model_coefficients_start = tf.zeros(x_.shape[-1], np.float32)
+
+ with tf.variable_scope(tf.get_variable_scope(), reuse=tf.AUTO_REUSE):
+ model_coefficients, is_converged, num_iter = tfp.glm.fit_sparse(
+ model_matrix=tf.convert_to_tensor(x_),
+ response=tf.convert_to_tensor(y_),
+ model=model,
+ model_coefficients_start=model_coefficients_start,
+ l1_regularizer=800.,
+ l2_regularizer=None,
+ maximum_iterations=10,
+ maximum_full_sweeps_per_iteration=10,
+ tolerance=1e-6,
+ learning_rate=None)
+
+ init_op = tf.global_variables_initializer()
+ sess.run([init_op])
+ model_coefficients_, is_converged_, num_iter_ = sess.run([
+ model_coefficients, is_converged, num_iter])
+
+ print("is_converged:", is_converged_)
+ print(" num_iter:", num_iter_)
+ print("\nLearned / True")
+ print(np.concatenate(
+ [[model_coefficients_], [model_coefficients_true_]], axis=0).T)
+
+# ==>
+# is_converged: True
+# num_iter: 1
+#
+# Learned / True
+# [[ 0. 0. ]
+# [ 0. 0. ]
+# [ 0. 0. ]
+# [ 0.11195257 0.12484948]
+# [ 0. 0. ]
+# [ 0.05191106 0.06394956]
+# [-0.15090358 -0.15325639]
+# [-0.18187316 -0.18825999]
+# [-0.06140942 -0.07994166]
+# [ 0. 0. ]
+# [ 0. 0. ]
+# [ 0. 0. ]
+# [ 0.14474444 0.15810856]
+# [ 0. 0. ]
+# [-0.25249591 -0.24260855]
+# [ 0. 0. ]
+# [ 0. 0. ]
+# [-0.03888761 -0.06755984]
+# [ 0. 0. ]
+# [ 0. 0. ]
+# [ 0. 0. ]
+# [-0.0192222 -0.04169233]
+# [ 0. 0. ]
+# [ 0. 0. ]
+# [ 0.01434913 0.03568212]
+# [-0.11336883 -0.12873614]
+# [ 0. 0. ]
+# [-0.24496339 -0.24048163]
+# [ 0. 0. ]
+# [ 0. 0. ]
+# [ 0.04088281 0.06565224]
+# [-0.12784363 -0.13359821]
+# [ 0.05618424 0.07396613]
+# [ 0. 0. ]
+# [ 0. 0. ]
+# [ 0. 0. ]
+# [ 0. -0.01719233]
+# [ 0. 0. ]
+# [ 0. 0. ]
+# [-0.00076072 -0.03607186]
+# [ 0.21801499 0.21146794]
+# [-0.02161094 -0.04031265]
+# [ 0.0918689 0.10487888]
+# [ 0.0106154 0.03233612]
+# [-0.07817317 -0.09725142]
+# [ 0. 0. ]
+# [ 0. 0. ]
+# [-0.23725343 -0.24194022]
+# [ 0. 0. ]
+# [-0.08725718 -0.1048776 ]
+# [ 0. 0. ]
+# [ 0. 0. ]
+# [-0.02114314 -0.04145789]
+# [ 0. 0. ]
+# [ 0. 0. ]
+# [-0.02710908 -0.04590397]
+# [ 0.15293184 0.15415154]
+# [ 0.2114463 0.2088728 ]
+# [-0.10969634 -0.12368613]
+# [ 0. -0.01505797]
+# [-0.01140458 -0.03234904]
+# [ 0.16051085 0.1680062 ]
+# [ 0.09816848 0.11094204]
+```
+
+#### References
+
+[1]: Jerome Friedman, Trevor Hastie and Rob Tibshirani. Regularization Paths
+ for Generalized Linear Models via Coordinate Descent. _Journal of
+ Statistical Software_, 33(1), 2010.
+ https://www.jstatsoft.org/article/view/v033i01/v33i01.pdf
+
+[2]: Guo-Xun Yuan, Chia-Hua Ho and Chih-Jen Lin. An Improved GLMNET for
+ L1-regularized Logistic Regression. _Journal of Machine Learning
+ Research_, 13, 2012.
+ http://www.jmlr.org/papers/volume13/yuan12a/yuan12a.pdf
\ No newline at end of file
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/glm/fit_sparse_one_step.md b/tensorflow_probability/g3doc/api_docs/python/tfp/glm/fit_sparse_one_step.md
new file mode 100644
index 0000000000..5c631ad9c2
--- /dev/null
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/glm/fit_sparse_one_step.md
@@ -0,0 +1,116 @@
+tfp.glm.ExponentialFamily
-like instance, which specifies the link
+ function and distribution of the GLM, and thus characterizes the negative
+ log-likelihood which will be minimized. Must have sufficient statistic
+ equal to the response, that is, `T(y) = y`.
+* `model_coefficients_start`: vector-shaped, `float` `Tensor` with the same
+ dtype as `model_matrix`, representing the initial values of the
+ coefficients for the GLM regression. Has shape `[n]` where `model_matrix`
+ has shape `[N, n]`.
+* `tolerance`: scalar, `float` `Tensor` representing the convergence threshold.
+ The optimization step will terminate early, returning its current value of
+ `model_coefficients_start + model_coefficients_update`, once the following
+ condition is met:
+ `||model_coefficients_update_end - model_coefficients_update_start||_2
+ / (1 + ||model_coefficients_start||_2)
+ < sqrt(tolerance)`,
+ where `model_coefficients_update_end` is the value of
+ `model_coefficients_update` at the end of a sweep and
+ `model_coefficients_update_start` is the value of
+ `model_coefficients_update` at the beginning of that sweep.
+* `l1_regularizer`: scalar, `float` `Tensor` representing the weight of the L1
+ regularization term (see equation above).
+* `l2_regularizer`: scalar, `float` `Tensor` representing the weight of the L2
+ regularization term (see equation above).
+ Default value: `None` (i.e., no L2 regularization).
+* `maximum_full_sweeps`: Python integer specifying maximum number of sweeps to
+ run. A "sweep" consists of an iteration of coordinate descent on each
+ coordinate. After this many sweeps, the algorithm will terminate even if
+ convergence has not been reached.
+ Default value: `1`.
+* `learning_rate`: scalar, `float` `Tensor` representing a multiplicative factor
+ used to dampen the proximal gradient descent steps.
+ Default value: `None` (i.e., factor is conceptually `1`).
+* `model_coefficients_update_var`: `Variable` with the same shape and dtype as
+ `model_coefficients_start`. Used to store the current value of
+ `model_coefficients_update`.
+ Default value: `None` (i.e., a new `Variable` will be created).
+* `name`: Python string representing the name of the TensorFlow operation.
+ The default name is `"fit_sparse_one_step"`.
+
+
+#### Returns:
+
+* `model_coefficients`: `Tensor` having the same shape and dtype as
+ `model_coefficients_start`, representing the updated value of
+ `model_coefficients`, that is, `model_coefficients_start +
+ model_coefficients_update`.
+* `is_converged`: scalar, `bool` `Tensor` indicating whether convergence
+ occurred within the specified number of sweeps.
+* `iter`: scalar, `int` `Tensor` representing the actual number of coordinate
+ updates made (before achieving convergence). Since each sweep consists of
+ `tf.size(model_coefficients_start)` iterations, the maximum number of
+ updates is `maximum_full_sweeps * tf.size(model_coefficients_start)`.
\ No newline at end of file
diff --git a/tensorflow_probability/g3doc/api_docs/python/tfp/glm/soft_threshold.md b/tensorflow_probability/g3doc/api_docs/python/tfp/glm/soft_threshold.md
new file mode 100644
index 0000000000..2596c994e0
--- /dev/null
+++ b/tensorflow_probability/g3doc/api_docs/python/tfp/glm/soft_threshold.md
@@ -0,0 +1,100 @@
+__init__
activity_regularizer
inbound_nodes
input
outbound_nodes
output
__init__
__call__
add_loss
add_update
add_variable
add_weight
apply
call
compute_mask
__init__
activity_regularizer
inbound_nodes
input
outbound_nodes
output
__init__
__call__
add_loss
add_update
add_variable
add_weight
apply
call
compute_mask
__init__
activity_regularizer
inbound_nodes
input
outbound_nodes
output
__init__
__call__
add_loss
add_update
add_variable
add_weight
apply
call
compute_mask
__init__
activity_regularizer
inbound_nodes
input
outbound_nodes
output
__init__
__call__
add_loss
add_update
add_variable
add_weight
apply
call
compute_mask
__init__
activity_regularizer
inbound_nodes
input
outbound_nodes
output
__init__
__call__
add_loss
add_update
add_variable
add_weight
apply
call
compute_mask
__init__
activity_regularizer
inbound_nodes
input
outbound_nodes
output
__init__
__call__
add_loss
add_update
add_variable
add_weight
apply
call
compute_mask
__init__
activity_regularizer
inbound_nodes
input
outbound_nodes
output
__init__
__call__
add_loss
add_update
add_variable
add_weight
apply
call
compute_mask
__init__
inbound_nodes
input
outbound_nodes
output
__init__
__call__
add_loss
add_update
add_variable
add_weight
apply
call
compute_mask
__init__
activity_regularizer
inbound_nodes
input
outbound_nodes
output
__init__
__call__
add_loss
add_update
add_variable
add_weight
apply
call
compute_mask
is_calibrated
name
num_leapfrog_steps
parameters
seed
state_gradients_are_stopped
step_size
step_size_update_fn
target_log_prob_fn
__init__
__init__
is_calibrated
name
num_leapfrog_steps
parameters
seed
state_gradients_are_stopped
step_size
step_size_update_fn
target_log_prob_fn
bootstrap_results
is_calibrated
name
parallel_iterations
parameters
seed
step_size
target_log_prob_fn
volatility_fn
__init__
__init__
is_calibrated
name
parallel_iterations
parameters
seed
step_size
target_log_prob_fn
volatility_fn
bootstrap_results
inner_kernel
is_calibrated
name
parameters
seed
__init__
__init__
inner_kernel
is_calibrated
name
parameters
seed
bootstrap_results
is_calibrated
name
new_state_fn
parameters
seed
target_log_prob_fn
__init__
__init__
is_calibrated
name
new_state_fn
parameters
seed
target_log_prob_fn
bootstrap_results
exchange_proposed_fn
inverse_temperatures
is_calibrated
name
num_replica
parameters
seed
target_log_prob_fn
__init__
__init__
exchange_proposed_fn
inverse_temperatures
is_calibrated
name
num_replica
parameters
seed
target_log_prob_fn
bootstrap_results
is_calibrated
max_doublings
name
parameters
seed
step_size
target_log_prob_fn
__init__
__init__
is_calibrated
max_doublings
name
parameters
seed
step_size
target_log_prob_fn
bootstrap_results
bijector
inner_kernel
is_calibrated
name
parameters
__init__
__init__
bijector
inner_kernel
is_calibrated
name
parameters
bootstrap_results
is_calibrated
name
num_leapfrog_steps
parameters
seed
state_gradients_are_stopped
step_size
target_log_prob_fn
__init__
__init__
is_calibrated
name
num_leapfrog_steps
parameters
seed
state_gradients_are_stopped
step_size
target_log_prob_fn
bootstrap_results
compute_acceptance
is_calibrated
name
parallel_iterations
parameters
seed
step_size
target_log_prob_fn
volatility_fn
__init__
__init__
compute_acceptance
is_calibrated
name
parallel_iterations
parameters
seed
step_size
target_log_prob_fn
volatility_fn
bootstrap_results
is_calibrated
name
new_state_fn
parameters
seed
target_log_prob_fn
__init__
__init__
is_calibrated
name
new_state_fn
parameters
seed
target_log_prob_fn
bootstrap_results
__all__
absolute_import
division
print_function
variable_scope
__init__
__init__
variable_scope
apply_gradients
variable_scope
__init__
__init__
variable_scope
apply_gradients
__init__
amplitude
dtype
feature_ndims
__init__
__add__
__init__
amplitude
dtype
feature_ndims
__init__
__add__
__init__
amplitude
dtype
feature_ndims
__init__
__add__
__init__
amplitude
dtype
feature_ndims
__init__
__add__
__init__
amplitude
dtype
feature_ndims
__init__
__add__
__init__
batch_shape
dtype
feature_ndims
__init__
__add__
tfp.distributions.LinearGaussianStateSpaceModel
for
+details.
+
+The `AdditiveStateSpaceModel` represents a sum of component state space
+models. Each of the `N` components describes a random process
+generating a distribution on observed time series `x1[t], x2[t], ..., xN[t]`.
+The additive model represents the sum of these
+processes, `y[t] = x1[t] + x2[t] + ... + xN[t] + eps[t]`, where
+`eps[t] ~ N(0, observation_noise_scale)` is an observation noise term.
+
+#### Mathematical Details
+
+The additive model concatenates the latent states of its component models.
+The generative process runs each component's dynamics in its own subspace of
+latent space, and then observes the sum of the observation models from the
+components.
+
+Formally, the transition model is linear Gaussian:
+
+```
+p(z[t+1] | z[t]) ~ Normal(loc = transition_matrix.matmul(z[t]),
+ cov = transition_cov)
+```
+
+where each `z[t]` is a latent state vector concatenating the component
+state vectors, `z[t] = [z1[t], z2[t], ..., zN[t]]`, so it has size
+`latent_size = sum([c.latent_size for c in components])`.
+
+The transition matrix is the block-diagonal composition of transition
+matrices from the component processes:
+
+```
+transition_matrix =
+ [[ c0.transition_matrix, 0., ..., 0. ],
+ [ 0., c1.transition_matrix, ..., 0. ],
+ [ ... ... ... ],
+ [ 0., 0., ..., cN.transition_matrix ]]
+```
+
+and the noise covariance is similarly the block-diagonal composition of
+component noise covariances:
+
+```
+transition_cov =
+ [[ c0.transition_cov, 0., ..., 0. ],
+ [ 0., c1.transition_cov, ..., 0. ],
+ [ ... ... ... ],
+ [ 0., 0., ..., cN.transition_cov ]]
+```
+
+The observation model is also linear Gaussian,
+
+```
+p(y[t] | z[t]) ~ Normal(loc = observation_matrix.matmul(z[t]),
+ stddev = observation_noise_scale)
+```
+
+This implementation assumes scalar observations, so
+`observation_matrix` has shape `[1, latent_size]`. The additive
+observation matrix simply concatenates the observation matrices from each
+component:
+
+```
+observation_matrix =
+ concat([c0.obs_matrix, c1.obs_matrix, ..., cN.obs_matrix], axis=-1)
+```
+
+The effect is that each component observation matrix acts on the dimensions
+of latent state corresponding to that component, and the overall expected
+observation is the sum of the expected observations from each component.
+
+If `observation_noise_scale` is not explicitly specified, it is also computed
+by summing the noise variances of the component processes:
+
+```
+observation_noise_scale = sqrt(sum([
+ c.observation_noise_scale**2 for c in components]))
+```
+
+#### Examples
+
+To construct an additive state space model combining a local linear trend
+and day-of-week seasonality component (note, the `StructuralTimeSeries`
+classes, e.g., `Sum`, provide a higher-level interface for this
+construction, which will likely be preferred by most users):
+
+```
+ num_timesteps = 30
+ local_ssm = tfp.sts.LocalLinearTrendStateSpaceModel(
+ num_timesteps=num_timesteps,
+ level_scale=0.5,
+ slope_scale=0.1,
+ initial_state_prior=tfd.MultivariateNormalDiag(
+ loc=[0., 0.], scale_diag=[1., 1.]))
+ day_of_week_ssm = tfp.sts.SeasonalStateSpaceModel(
+ num_timesteps=num_timesteps,
+ num_seasons=7,
+ initial_state_prior=tfd.MultivariateNormalDiag(
+ loc=tf.zeros([7]), scale_diag=tf.ones([7])))
+ additive_ssm = tfp.sts.AdditiveStateSpaceModel(
+ component_ssms=[local_ssm, day_of_week_ssm],
+ observation_noise_scale=0.1)
+
+ y = additive_ssm.sample()
+ print(y.shape)
+ # => []
+```
+
+__init__
allow_nan_stats
batch_shape
dtype
event_shape
name
parameters
reparameterization_type
validate_args
batch_shape_tensor
cdf
copy
covariance
cross_entropy
tfp.distributions.Distribution
instance.
+* `name`: Python `str` prepended to names of ops created by this function.
+
+
+#### Returns:
+
+* `cross_entropy`: `self.dtype` `Tensor` with shape `[B1, ..., Bn]`
+ representing `n` different calculations of (Shanon) cross entropy.
+
+entropy
event_shape_tensor
forward_filter
is_scalar_batch
is_scalar_event
kl_divergence
tfp.distributions.Distribution
instance.
+* `name`: Python `str` prepended to names of ops created by this function.
+
+
+#### Returns:
+
+* `kl_divergence`: `self.dtype` `Tensor` with shape `[B1, ..., Bn]`
+ representing `n` different calculations of the Kullback-Leibler
+ divergence.
+
+log_cdf
log_prob
log_survival_function
mean
mode
param_shapes
param_static_shapes
prob
quantile
sample
stddev
survival_function
variance
__init__
batch_shape
initial_state_prior
latent_size
name
parameters
batch_shape_tensor
joint_log_prob
make_state_space_model
prior_sample
tfp.distributions.LinearGaussianStateSpaceModel
for
+details.
+
+The local linear trend model is a special case of a linear Gaussian SSM, in
+which the latent state posits a `level` and `slope`, each evolving via a
+Gaussian random walk:
+
+```python
+level[t] = level[t-1] + slope[t-1] + Normal(0., level_scale)
+slope[t] = slope[t-1] + Normal(0., slope_scale)
+```
+
+The latent state is the two-dimensional tuple `[level, slope]`. The
+`level` is observed at each timestep.
+
+The parameters `level_scale`, `slope_scale`, and `observation_noise_scale`
+are each (a batch of) scalars. The batch shape of this `Distribution` is the
+broadcast batch shape of these parameters and of the `initial_state_prior`.
+
+#### Mathematical Details
+
+The linear trend model implements a
+tfp.distributions.LinearGaussianStateSpaceModel
with `latent_size = 2`
+and `observation_size = 1`, following the transition model:
+
+```
+transition_matrix = [[1., 1.]
+ [0., 1.]]
+transition_noise ~ N(loc=0., scale=diag([level_scale, slope_scale]))
+```
+
+which implements the evolution of `[level, slope]` described above, and
+the observation model:
+
+```
+observation_matrix = [[1., 0.]]
+observation_noise ~ N(loc=0, scale=observation_noise_scale)
+```
+
+which picks out the first latent component, i.e., the `level`, as the
+observation at each timestep.
+
+#### Examples
+
+A simple model definition:
+
+```python
+linear_trend_model = LocalLinearTrendStateSpaceModel(
+ num_timesteps=50,
+ level_scale=0.5,
+ slope_scale=0.5,
+ initial_state_prior=tfd.MultivariateNormalDiag(scale_diag=[1., 1.]))
+
+y = linear_trend_model.sample() # y has shape [50, 1]
+lp = linear_trend_model.log_prob(y) # log_prob is scalar
+```
+
+Passing additional parameter dimensions constructs a batch of models. The
+overall batch shape is the broadcast batch shape of the parameters:
+
+```python
+linear_trend_model = LocalLinearTrendStateSpaceModel(
+ num_timesteps=50,
+ level_scale=tf.ones([10]),
+ slope_scale=0.5,
+ initial_state_prior=tfd.MultivariateNormalDiag(
+ scale_diag=tf.ones([10, 10, 2])))
+
+y = linear_trend_model.sample(5) # y has shape [5, 10, 10, 50, 1]
+lp = linear_trend_model.log_prob(y) # has shape [5, 10, 10]
+```
+
+__init__
allow_nan_stats
batch_shape
dtype
event_shape
level_scale
name
observation_noise_scale
parameters
reparameterization_type
slope_scale
validate_args
batch_shape_tensor
cdf
copy
covariance
cross_entropy
tfp.distributions.Distribution
instance.
+* `name`: Python `str` prepended to names of ops created by this function.
+
+
+#### Returns:
+
+* `cross_entropy`: `self.dtype` `Tensor` with shape `[B1, ..., Bn]`
+ representing `n` different calculations of (Shanon) cross entropy.
+
+entropy
event_shape_tensor
forward_filter
is_scalar_batch
is_scalar_event
kl_divergence
tfp.distributions.Distribution
instance.
+* `name`: Python `str` prepended to names of ops created by this function.
+
+
+#### Returns:
+
+* `kl_divergence`: `self.dtype` `Tensor` with shape `[B1, ..., Bn]`
+ representing `n` different calculations of the Kullback-Leibler
+ divergence.
+
+log_cdf
log_prob
log_survival_function
mean
mode
param_shapes
param_static_shapes
prob
quantile
sample
stddev
survival_function
variance
__init__
batch_shape
initial_state_prior
latent_size
name
num_seasons
num_steps_per_season
parameters
batch_shape_tensor
joint_log_prob
make_state_space_model
prior_sample
tfp.distributions.LinearGaussianStateSpaceModel
for
+details.
+
+A seasonal effect model is a special case of a linear Gaussian SSM. The
+latent states represent an unknown effect from each of several 'seasons';
+these are generally not meteorological seasons, but represent regular
+recurring patterns such as hour-of-day or day-of-week effects. The effect of
+each season drifts from one occurrence to the next, following a Gaussian
+random walk:
+
+```python
+effects[season, occurrence[i]] = (
+ effects[season, occurrence[i-1]] + Normal(loc=0., scale=drift_scale))
+```
+
+The latent state has dimension `num_seasons`, containing one effect for each
+seasonal component. The parameters `drift_scale` and
+`observation_noise_scale` are each (a batch of) scalars. The batch shape of
+this `Distribution` is the broadcast batch shape of these parameters and of
+the `initial_state_prior`.
+
+#### Mathematical Details
+
+The seasonal effect model implements a
+tfp.distributions.LinearGaussianStateSpaceModel
with
+`latent_size = num_seasons` and `observation_size = 1`. The latent state
+is organized so that the *current* seasonal effect is always in the first
+(zeroth) dimension. The transition model rotates the latent state to shift
+to a new effect at the end of each season:
+
+```
+transition_matrix[t] = (permutation_matrix([1, 2, ..., num_seasons-1, 0])
+ if season_is_changing(t)
+ else eye(num_seasons)
+transition_noise[t] ~ Normal(loc=0., scale_diag=(
+ [drift_scale, 0, ..., 0]
+ if season_is_changing(t)
+ else [0, 0, ..., 0]))
+```
+
+where `season_is_changing(t)` is `True` if ``t `mod`
+sum(num_steps_per_season)`` is in the set of final days for each season,
+given by `cumsum(num_steps_per_season) - 1`. The observation model always
+picks out the effect for the current season, i.e., the first element of
+the latent state:
+
+```
+observation_matrix = [[1., 0., ..., 0.]]
+observation_noise ~ Normal(loc=0, scale=observation_noise_scale)
+```
+
+#### Examples
+
+A state-space model with day-of-week seasonality on hourly data:
+
+```python
+day_of_week = SeasonalStateSpaceModel(
+ num_timesteps=30,
+ num_seasons=7,
+ drift_scale=0.1,
+ initial_state_prior=tfd.MultivariateNormalDiag(
+ scale_diag=tf.ones([7], dtype=tf.float32),
+ num_steps_per_season=24)
+```
+
+A model with basic month-of-year seasonality on daily data, demonstrating
+seasons of varying length:
+
+```python
+month_of_year = SeasonalStateSpaceModel(
+ num_timesteps=2 * 365, # 2 years
+ num_seasons=12,
+ drift_scale=0.1,
+ initial_state_prior=tfd.MultivariateNormalDiag(
+ scale_diag=tf.ones([12], dtype=tf.float32)),
+ num_steps_per_season=[31, 28, 31, 30, 30, 31, 31, 31, 30, 31, 30, 31],
+ initial_step=22)
+```
+
+Note that we've used `initial_step=22` to denote that the model begins
+on January 23 (steps are zero-indexed). A general implementation of
+month-of-year seasonality would require additional logic; this
+version works over time periods not involving a leap year.
+
+__init__
allow_nan_stats
batch_shape
drift_scale
dtype
event_shape
name
num_seasons
num_steps_per_season
observation_noise_scale
parameters
reparameterization_type
validate_args
batch_shape_tensor
cdf
copy
covariance
cross_entropy
tfp.distributions.Distribution
instance.
+* `name`: Python `str` prepended to names of ops created by this function.
+
+
+#### Returns:
+
+* `cross_entropy`: `self.dtype` `Tensor` with shape `[B1, ..., Bn]`
+ representing `n` different calculations of (Shanon) cross entropy.
+
+entropy
event_shape_tensor
forward_filter
is_scalar_batch
is_scalar_event
kl_divergence
tfp.distributions.Distribution
instance.
+* `name`: Python `str` prepended to names of ops created by this function.
+
+
+#### Returns:
+
+* `kl_divergence`: `self.dtype` `Tensor` with shape `[B1, ..., Bn]`
+ representing `n` different calculations of the Kullback-Leibler
+ divergence.
+
+log_cdf
log_prob
log_survival_function
mean
mode
param_shapes
param_static_shapes
prob
quantile
sample
stddev
survival_function
variance
__init__
batch_shape
latent_size
name
parameters
batch_shape_tensor
joint_log_prob
make_state_space_model
prior_sample
__init__
batch_shape
components
components_by_name
latent_size
name
parameters
batch_shape_tensor
joint_log_prob
make_state_space_model
prior_sample
tfp.distributions
which are
parameterized by a transformation of a single input `Tensor`. The
transformations are presumed to use TensorFlow variables and typically need to
be fit, e.g., using `tf.train` optimizers or `tfp.optimizers`.
@@ -31,11 +32,11 @@ be fit, e.g., using `tf.train` optimizers or `tfp.optimizers`.
## Other Members
-`__all__`
+__all__
absolute_import
division
print_function
__all__
absolute_import
division
print_function