Skip to content

Commit 739846f

Browse files
hawkinsptensorflower-gardener
authored andcommitted
[numpy] Replace interpolation= with method= on numpy's percentile, quantile, nanpercentile and nanquantile APIs.
The `interpolation` keyword argument is removed in NumPy 2.4. PiperOrigin-RevId: 840909914
1 parent e4dd815 commit 739846f

File tree

1 file changed

+19
-19
lines changed

1 file changed

+19
-19
lines changed

tensorflow_probability/python/stats/quantiles_test.py

Lines changed: 19 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -440,7 +440,7 @@ def test_one_dim_odd_input(self):
440440
x = [1., 5., 3., 2., 4.]
441441
for q in [0, 10, 25, 49.9, 50, 50.01, 90, 95, 100]:
442442
expected_percentile = np.percentile(
443-
x, q=q, interpolation=self._interpolation, axis=0)
443+
x, q=q, method=self._interpolation, axis=0)
444444
pct = quantiles.percentile(
445445
x, q=q, interpolation=self._interpolation, axis=[0])
446446
self.assertAllEqual((), pct.shape)
@@ -450,7 +450,7 @@ def test_one_dim_odd_input_vector_q(self):
450450
x = [1., 5., 3., 2., 4.]
451451
q = np.array([0, 10, 25, 49.9, 50, 50.01, 90, 95, 100])
452452
expected_percentile = np.percentile(
453-
x, q=q, interpolation=self._interpolation, axis=0)
453+
x, q=q, method=self._interpolation, axis=0)
454454
pct = quantiles.percentile(
455455
x, q=q, interpolation=self._interpolation, axis=[0])
456456
self.assertAllEqual(q.shape, pct.shape)
@@ -460,7 +460,7 @@ def test_one_dim_even_input(self):
460460
x = [1., 5., 3., 2., 4., 5.]
461461
for q in [0, 10, 25, 49.9, 50, 50.01, 90, 95, 100]:
462462
expected_percentile = np.percentile(
463-
x, q=q, interpolation=self._interpolation)
463+
x, q=q, method=self._interpolation)
464464
pct = quantiles.percentile(x, q=q, interpolation=self._interpolation)
465465
self.assertAllEqual((), pct.shape)
466466
self.assertAllClose(expected_percentile, self.evaluate(pct))
@@ -469,7 +469,7 @@ def test_two_dim_odd_input_axis_0(self):
469469
x = np.array([[-1., 50., -3.5, 2., -1], [0., 0., 3., 2., 4.]]).T
470470
for q in [0, 10, 25, 49.9, 50, 50.01, 90, 95, 100]:
471471
expected_percentile = np.percentile(
472-
x, q=q, interpolation=self._interpolation, axis=0)
472+
x, q=q, method=self._interpolation, axis=0)
473473
# Get dim 1 with negative and positive indices.
474474
pct_neg_index = quantiles.percentile(
475475
x, q=q, interpolation=self._interpolation, axis=[0])
@@ -485,7 +485,7 @@ def test_simple(self):
485485
x = np.array([1., 2., 4., 50.])
486486
q = 10
487487
expected_percentile = np.percentile(
488-
x, q=q, interpolation=self._interpolation, axis=0)
488+
x, q=q, method=self._interpolation, axis=0)
489489
pct = quantiles.percentile(
490490
x, q=q, interpolation=self._interpolation, axis=[0])
491491
self.assertAllClose(expected_percentile, self.evaluate(pct))
@@ -494,7 +494,7 @@ def test_two_dim_even_axis_0(self):
494494
x = np.array([[1., 2., 4., 50.], [1., 2., -4., 5.]]).T
495495
for q in [0, 10, 25, 49.9, 50, 50.01, 90, 95, 100]:
496496
expected_percentile = np.percentile(
497-
x, q=q, interpolation=self._interpolation, axis=0)
497+
x, q=q, method=self._interpolation, axis=0)
498498
pct = quantiles.percentile(
499499
x, q=q, interpolation=self._interpolation, axis=[0])
500500
self.assertAllEqual((2,), pct.shape)
@@ -504,7 +504,7 @@ def test_two_dim_even_input_and_keepdims_true(self):
504504
x = np.array([[1., 2., 4., 50.], [1., 2., -4., 5.]]).T
505505
for q in [0, 10, 25, 49.9, 50, 50.01, 90, 95, 100]:
506506
expected_percentile = np.percentile(
507-
x, q=q, interpolation=self._interpolation, keepdims=True, axis=0)
507+
x, q=q, method=self._interpolation, keepdims=True, axis=0)
508508
pct = quantiles.percentile(
509509
x, q=q, interpolation=self._interpolation, keepdims=True, axis=[0])
510510
self.assertAllEqual((1, 2), pct.shape)
@@ -514,7 +514,7 @@ def test_four_dimensional_input(self):
514514
x = np.random.rand(2, 3, 4, 5)
515515
for axis in [None, 0, 1, -2, (0,), (-1,), (-1, 1), (3, 1), (-3, 0)]:
516516
expected_percentile = np.percentile(
517-
x, q=0.77, interpolation=self._interpolation, axis=axis)
517+
x, q=0.77, method=self._interpolation, axis=axis)
518518
pct = quantiles.percentile(
519519
x, q=0.77, interpolation=self._interpolation, axis=axis)
520520
self.assertAllEqual(expected_percentile.shape, pct.shape)
@@ -525,7 +525,7 @@ def test_four_dimensional_input_q_vector(self):
525525
q = [0.25, 0.75]
526526
for axis in [None, 0, (-1, 1)]:
527527
expected_percentile = np.percentile(
528-
x, q=q, interpolation=self._interpolation, axis=axis)
528+
x, q=q, method=self._interpolation, axis=axis)
529529
pct = quantiles.percentile(
530530
x, q=q, interpolation=self._interpolation, axis=axis)
531531
self.assertAllEqual(expected_percentile.shape, pct.shape)
@@ -536,7 +536,7 @@ def test_four_dimensional_input_q_vector_and_keepdims(self):
536536
q = [0.25, 0.75]
537537
for axis in [None, 0, (-1, 1)]:
538538
expected_percentile = np.percentile(
539-
x, q=q, interpolation=self._interpolation, axis=axis, keepdims=True)
539+
x, q=q, method=self._interpolation, axis=axis, keepdims=True)
540540
pct = quantiles.percentile(
541541
x, q=q, interpolation=self._interpolation, axis=axis, keepdims=True)
542542
self.assertAllEqual(expected_percentile.shape, pct.shape)
@@ -548,7 +548,7 @@ def test_four_dimensional_input_and_keepdims(self):
548548
expected_percentile = np.percentile(
549549
x,
550550
q=0.77,
551-
interpolation=self._interpolation,
551+
method=self._interpolation,
552552
axis=axis,
553553
keepdims=True)
554554
pct = quantiles.percentile(
@@ -565,7 +565,7 @@ def test_four_dimensional_input_x_static_ndims_but_dynamic_sizes(self):
565565
x_ph = tf1.placeholder_with_default(x, shape=[None, None, None, None])
566566
for axis in [None, 0, 1, -2, (0,), (-1,), (-1, 1), (3, 1), (-3, 0)]:
567567
expected_percentile = np.percentile(
568-
x, q=0.77, interpolation=self._interpolation, axis=axis)
568+
x, q=0.77, method=self._interpolation, axis=axis)
569569
pct = quantiles.percentile(
570570
x_ph, q=0.77, interpolation=self._interpolation, axis=axis)
571571
self.assertAllClose(expected_percentile, self.evaluate(pct))
@@ -577,7 +577,7 @@ def test_four_dimensional_input_and_keepdims_x_static_ndims_dynamic_sz(self):
577577
expected_percentile = np.percentile(
578578
x,
579579
q=0.77,
580-
interpolation=self._interpolation,
580+
method=self._interpolation,
581581
axis=axis,
582582
keepdims=True)
583583
pct = quantiles.percentile(
@@ -595,7 +595,7 @@ def test_with_integer_dtype(self):
595595
x = [1, 5, 3, 2, 4]
596596
for q in [0, 10, 25, 49.9, 50, 50.01, 90, 95, 100]:
597597
expected_percentile = np.percentile(
598-
x, q=q, interpolation=self._interpolation)
598+
x, q=q, method=self._interpolation)
599599
pct = quantiles.percentile(x, q=q, interpolation=self._interpolation)
600600
self.assertEqual(tf.int32, pct.dtype)
601601
self.assertAllEqual((), pct.shape)
@@ -610,13 +610,13 @@ def test_nan_propagation(self):
610610
# Test each percentile individually
611611
for q in qs:
612612
expected_percentile = np.percentile(
613-
xs, q=q, interpolation=self._interpolation)
613+
xs, q=q, method=self._interpolation)
614614
self.assertTrue(np.isnan(expected_percentile))
615615
pct = quantiles.percentile(xs, q=q, interpolation=self._interpolation)
616616
self.assertTrue(self.evaluate(tf.math.is_nan(pct)))
617617
# Test vector percentile as well
618618
expected_percentiles = np.percentile(
619-
xs, q=qs, interpolation=self._interpolation)
619+
xs, q=qs, method=self._interpolation)
620620
pcts = quantiles.percentile(xs, q=qs, interpolation=self._interpolation)
621621
self.assertAllEqual(expected_percentiles, pcts)
622622

@@ -793,7 +793,7 @@ def test_one_dim_odd_input(self):
793793
x = [1., 5., 3., 2., 4.]
794794
for q in [0, 10.1, 25.1, 49.9, 50.1, 50.01, 89, 100]:
795795
expected_percentile = np.percentile(
796-
x, q=q, interpolation=self._interpolation)
796+
x, q=q, method=self._interpolation)
797797
pct = quantiles.percentile(x, q=q, interpolation=self._interpolation)
798798
self.assertAllEqual((), pct.shape)
799799
self.assertAllClose(expected_percentile, self.evaluate(pct))
@@ -802,7 +802,7 @@ def test_one_dim_even_input(self):
802802
x = [1., 5., 3., 2., 4., 5.]
803803
for q in [0, 10.1, 25.1, 49.9, 50.1, 50.01, 89, 100]:
804804
expected_percentile = np.percentile(
805-
x, q=q, interpolation=self._interpolation)
805+
x, q=q, method=self._interpolation)
806806
pct = quantiles.percentile(x, q=q, interpolation=self._interpolation)
807807
self.assertAllEqual((), pct.shape)
808808
self.assertAllClose(expected_percentile, self.evaluate(pct))
@@ -811,7 +811,7 @@ def test_one_dim_numpy_docs_example(self):
811811
x = [[10.0, 7.0, 4.0], [3.0, 2.0, 1.0]]
812812
for q in [0, 10.1, 25.1, 49.9, 50.0, 50.1, 50.01, 89, 100]:
813813
expected_percentile = np.percentile(
814-
x, q=q, interpolation=self._interpolation)
814+
x, q=q, method=self._interpolation)
815815
pct = quantiles.percentile(x, q=q, interpolation=self._interpolation)
816816
self.assertAllEqual((), pct.shape)
817817
self.assertAllClose(expected_percentile, self.evaluate(pct))

0 commit comments

Comments
 (0)