-
Notifications
You must be signed in to change notification settings - Fork 36
/
gatv2_conv_PyG.py
190 lines (163 loc) · 7.64 KB
/
gatv2_conv_PyG.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
from typing import Union, Tuple, Optional
from torch_geometric.typing import (Adj, Size, OptTensor, PairTensor)
import torch
from torch import Tensor
import torch.nn.functional as F
from torch.nn import Parameter, Linear
from torch_sparse import SparseTensor, set_diag
from torch_geometric.nn.conv import MessagePassing
from torch_geometric.utils import remove_self_loops, add_self_loops, softmax
from torch_geometric.nn.inits import glorot, zeros
class GATv2Conv(MessagePassing):
r"""The GATv2 operator from the `"How Attentive are Graph Attention Networks?"
<https://arxiv.org/abs/2105.14491>`_ paper, which fixes the static
attention problem of the standard :class:`~torch_geometric.conv.GATConv`
layer: since the linear layers in the standard GAT are applied right after
each other, the ranking of attended nodes is unconditioned on the query
node. In contrast, in GATv2, every node can attend to any other node.
.. math::
\mathbf{x}^{\prime}_i = \alpha_{i,i}\mathbf{\Theta}\mathbf{x}_{i} +
\sum_{j \in \mathcal{N}(i)} \alpha_{i,j}\mathbf{\Theta}\mathbf{x}_{j},
where the attention coefficients :math:`\alpha_{i,j}` are computed as
.. math::
\alpha_{i,j} =
\frac{
\exp\left(\mathbf{a}^{\top}\mathrm{LeakyReLU}\left(\mathbf{\Theta}
[\mathbf{x}_i \, \Vert \, \mathbf{x}_j]
\right)\right)}
{\sum_{k \in \mathcal{N}(i) \cup \{ i \}}
\exp\left(\mathbf{a}^{\top}\mathrm{LeakyReLU}\left(\mathbf{\Theta}
[\mathbf{x}_i \, \Vert \, \mathbf{x}_k]
\right)\right)}.
Args:
in_channels (int): Size of each input sample.
out_channels (int): Size of each output sample.
heads (int, optional): Number of multi-head-attentions.
(default: :obj:`1`)
concat (bool, optional): If set to :obj:`False`, the multi-head
attentions are averaged instead of concatenated.
(default: :obj:`True`)
negative_slope (float, optional): LeakyReLU angle of the negative
slope. (default: :obj:`0.2`)
dropout (float, optional): Dropout probability of the normalized
attention coefficients which exposes each node to a stochastically
sampled neighborhood during training. (default: :obj:`0`)
add_self_loops (bool, optional): If set to :obj:`False`, will not add
self-loops to the input graph. (default: :obj:`True`)
bias (bool, optional): If set to :obj:`False`, the layer will not learn
an additive bias. (default: :obj:`True`)
share_weights (bool, optional): If set to :obj:`True`, the same matrix
will be applied to the source and the target node of every edge.
(default: :obj:`False`)
**kwargs (optional): Additional arguments of
:class:`torch_geometric.nn.conv.MessagePassing`.
"""
_alpha: OptTensor
def __init__(self, in_channels: int,
out_channels: int, heads: int = 1, concat: bool = True,
negative_slope: float = 0.2, dropout: float = 0.,
add_self_loops: bool = True, bias: bool = True,
share_weights: bool = False,
**kwargs):
super(GATv2Conv, self).__init__(node_dim=0, **kwargs)
self.in_channels = in_channels
self.out_channels = out_channels
self.heads = heads
self.concat = concat
self.negative_slope = negative_slope
self.dropout = dropout
self.add_self_loops = add_self_loops
self.share_weights = share_weights
self.lin_l = Linear(in_channels, heads * out_channels, bias=bias)
if share_weights:
self.lin_r = self.lin_l
else:
self.lin_r = Linear(in_channels, heads * out_channels, bias=bias)
self.att = Parameter(torch.Tensor(1, heads, out_channels))
if bias and concat:
self.bias = Parameter(torch.Tensor(heads * out_channels))
elif bias and not concat:
self.bias = Parameter(torch.Tensor(out_channels))
else:
self.register_parameter('bias', None)
self._alpha = None
self.reset_parameters()
def reset_parameters(self):
glorot(self.lin_l.weight)
glorot(self.lin_r.weight)
glorot(self.att)
zeros(self.bias)
def forward(self, x: Union[Tensor, PairTensor], edge_index: Adj,
size: Size = None, return_attention_weights: bool = None):
# type: (Union[Tensor, PairTensor], Tensor, Size, NoneType) -> Tensor # noqa
# type: (Union[Tensor, PairTensor], SparseTensor, Size, NoneType) -> Tensor # noqa
# type: (Union[Tensor, PairTensor], Tensor, Size, bool) -> Tuple[Tensor, Tuple[Tensor, Tensor]] # noqa
# type: (Union[Tensor, PairTensor], SparseTensor, Size, bool) -> Tuple[Tensor, SparseTensor] # noqa
r"""
Args:
return_attention_weights (bool, optional): If set to :obj:`True`,
will additionally return the tuple
:obj:`(edge_index, attention_weights)`, holding the computed
attention weights for each edge. (default: :obj:`None`)
"""
H, C = self.heads, self.out_channels
x_l: OptTensor = None
x_r: OptTensor = None
if isinstance(x, Tensor):
assert x.dim() == 2
x_l = self.lin_l(x).view(-1, H, C)
if self.share_weights:
x_r = x_l
else:
x_r = self.lin_r(x).view(-1, H, C)
else:
x_l, x_r = x[0], x[1]
assert x[0].dim() == 2
x_l = self.lin_l(x_l).view(-1, H, C)
if x_r is not None:
x_r = self.lin_r(x_r).view(-1, H, C)
assert x_l is not None
assert x_r is not None
if self.add_self_loops:
if isinstance(edge_index, Tensor):
num_nodes = x_l.size(0)
if x_r is not None:
num_nodes = min(num_nodes, x_r.size(0))
if size is not None:
num_nodes = min(size[0], size[1])
edge_index, _ = remove_self_loops(edge_index)
edge_index, _ = add_self_loops(edge_index, num_nodes=num_nodes)
elif isinstance(edge_index, SparseTensor):
edge_index = set_diag(edge_index)
# propagate_type: (x: PairTensor)
out = self.propagate(edge_index, x=(x_l, x_r), size=size)
alpha = self._alpha
self._alpha = None
if self.concat:
out = out.view(-1, self.heads * self.out_channels)
else:
out = out.mean(dim=1)
if self.bias is not None:
out += self.bias
if isinstance(return_attention_weights, bool):
assert alpha is not None
if isinstance(edge_index, Tensor):
return out, (edge_index, alpha)
elif isinstance(edge_index, SparseTensor):
return out, edge_index.set_value(alpha, layout='coo')
else:
return out
def message(self, x_j: Tensor, x_i: Tensor,
index: Tensor, ptr: OptTensor,
size_i: Optional[int]) -> Tensor:
x = x_i + x_j
x = F.leaky_relu(x, self.negative_slope)
alpha = (x * self.att).sum(dim=-1)
alpha = softmax(alpha, index, ptr, size_i)
self._alpha = alpha
alpha = F.dropout(alpha, p=self.dropout, training=self.training)
return x_j * alpha.unsqueeze(-1)
def __repr__(self):
return '{}({}, {}, heads={})'.format(self.__class__.__name__,
self.in_channels,
self.out_channels, self.heads)