forked from juanis2112/Spyder-Workshop
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
executable file
·103 lines (81 loc) · 2.82 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# -*- coding: utf-8 -*-
"""Workshop utility functions."""
# Third-party imports
import matplotlib.pyplot as plt
import numpy as np
def plot_correlations(df, size=10):
"""
Plot a graphical correlation matrix for each pair of columns.
Parameters
----------
df : pandas.DataFrame
DataFrame on which to calculate correlations.
size : numeric, optional
Vertical and horizontal size of the plot. The default is 10.
Returns
-------
fig : matplotlib.figure.Figure
Figure object of the generated plot.
ax : matplotlib.axes.Axes
Axes object of the generated plot.
"""
corr = df.corr()
fig, ax = plt.subplots(figsize=(size, size))
ax.matshow(corr)
ax.set(xticks=range(len(corr.columns)), xticklabels=corr.columns)
ax.set(yticks=range(len(corr.columns)), yticklabels=corr.columns)
plt.show()
return fig, ax
def aggregate_by_year(df, date_column, figsize=(15, 8)):
"""
Aggregate a DataFrame by year and plot it.
Parameters
----------
df : pandas.DataFrame
DataFrame to aggregate by year and plot.
date_column : str
Label of the column containing the date values, as pd.Timestamps.
figsize : Tuple of (int, int), optional
Tuple with the size of the figure to generate in (width, height).
The default is (15, 8).
Returns
-------
df_yearly : pandas.DataFrameGroupBy
Grouped dataframe by year.
"""
df['year'] = df[date_column].dt.year
df_yearly = df.groupby('year').mean()
df_yearly.plot(subplots=True, figsize=figsize)
return df_yearly
def plot_color_gradients(cmap_category, cmap_list):
"""
Plot a convention for color gradients used for correlations.
Parameters
----------
cmap_category : str
Category of the color map, to use for the plot title.
cmap_list : list of str
List of colormap names to plot.
Returns
-------
fig : matplotlib.figure.Figure
Figure object of the generated plot.
ax : matplotlib.axes.Axes
Axes object of the generated plot.
"""
gradient = np.linspace(0, 1, 256)
gradient = np.vstack((gradient, gradient))
# Create figure and adjust figure height to number of colormaps
nrows = len(cmap_list)
figh = 0.35 + 0.15 + (nrows + (nrows - 1) * 0.1) * 0.22
fig, ax = plt.subplots(nrows=nrows, figsize=(6.4, figh))
fig.subplots_adjust(top=1-.35/figh, bottom=.15/figh, left=0.2, right=0.99)
ax.set_title(cmap_category + ' colormaps', fontsize=14)
for ax, name in zip([ax], cmap_list):
ax.imshow(gradient, aspect='auto', cmap=plt.get_cmap(name))
xticks = np.linspace(-1, 1, 3)
xtick_locs = np.linspace(0, 256, 3)
ax.set(xticks=xtick_locs, xticklabels=xticks)
ax.get_yaxis().set_visible(False)
plt.show()
return fig, ax