-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcappy_bigbench.py
222 lines (185 loc) · 7.53 KB
/
cappy_bigbench.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
from functools import partial
import os
import json
import random
import fire
import jax
import jax.numpy as jnp
import numpy as np
import optax
from rouge_score.rouge_scorer import RougeScorer
from transformers import AutoTokenizer, FlaxAutoModelForSequenceClassification
from redco import JsonlDataset, Deployer, Trainer
def get_cappy_dataset(bigbench_gens,
subset_name,
src_key,
tgt_key,
refs_key,
label_key,
train_size):
flag_set, tgt_set = set(), set()
train_examples = []
for example in bigbench_gens[f'{subset_name}_train']:
for ref in example[refs_key]:
train_examples.append(
{src_key: example[src_key], tgt_key: ref, label_key: 1.})
flag_set.add(f'{example[src_key]}|||{ref}')
tgt_set.add(ref)
neg_examples = []
for example in train_examples:
src, tgt = example[src_key], random.choice(sorted(list(tgt_set)))
if f'{src}|||{tgt}' not in flag_set:
neg_examples.append({src_key: src, tgt_key: tgt, label_key: 0.})
flag_set.add(f'{src}|||{tgt}')
train_examples.extend(neg_examples)
rouge_scorer = RougeScorer(['rougeL'], use_stemmer=True)
for example in bigbench_gens[f'{subset_name}_train']:
src, refs = example[src_key], example[refs_key]
for decoding in example['flan_samples']:
for sample in example['flan_samples'][decoding]:
tgt = sample[tgt_key]
if f'{src}|||{tgt}' not in flag_set:
flag_set.add(f'{src}|||{tgt}')
else:
continue
rouge_l = rouge_scorer.score_multi(
targets=refs, prediction=tgt)['rougeL'].fmeasure
train_examples.append(
{src_key: src, tgt_key: tgt, label_key: rouge_l})
random.shuffle(train_examples)
train_examples = \
(train_examples * (train_size // len(train_examples) + 1))[:train_size]
validation_examples = []
for example_idx, example in enumerate(
bigbench_gens[f'{subset_name}_validation']):
for decoding in example['flan_samples']:
for sample in example['flan_samples'][decoding]:
validation_examples.append({
'example_idx': example_idx,
src_key: example[src_key],
tgt_key: sample[tgt_key]
})
return {'train': train_examples, 'validation': validation_examples}
def collate_fn(examples, src_key, tgt_key, label_key, tokenizer, max_length):
batch = tokenizer(
[(example[src_key], example[tgt_key]) for example in examples],
max_length=max_length,
padding='max_length',
truncation=True,
return_tensors='np')
if label_key in examples[0]:
batch['labels'] = np.array([example[label_key] for example in examples])
return batch
def loss_fn(train_rng, state, params, batch, is_training):
labels = batch.pop('labels')
logits = state.apply_fn(
**batch, params=params, dropout_rng=train_rng, train=is_training).logits
return jnp.mean(jnp.square(logits[..., 0] - labels))
def pred_fn(pred_rng, params, batch, model):
if 'labels' in batch:
batch.pop('labels')
return model(**batch, params=params, train=False).logits[..., 0]
def eval_rouge(examples, preds, refs_key):
rouge_scorer = RougeScorer(['rougeL'], use_stemmer=True)
scores = []
for example, hypo in zip(examples, preds):
scores.append(rouge_scorer.score_multi(
targets=example[refs_key], prediction=hypo)['rougeL'].fmeasure)
return np.mean(scores)
def main(bigbench_gen_dir='bigbench_flan_gens',
bigbench_gen_model='flan-t5-xxl',
bigbench_subset_name='auto_categorization',
src_key='instruction',
tgt_key='response',
refs_key='references',
label_key='label',
model_name_or_path='btan2/cappy-large',
n_model_shards=1,
max_length=512,
train_size=102400,
per_device_batch_size=8,
eval_per_device_batch_size=32,
accumulate_grad_batches=16,
learning_rate=2e-5,
warmup_rate=0.1,
weight_decay=0.,
results_dir='bigbench_cappy_results',
seed=11111):
result_filename = \
f'{results_dir}/{bigbench_gen_model}/{bigbench_subset_name}.json'
if os.path.exists(result_filename):
print(f'Result already exists in {result_filename}. Skipped.')
return
else:
os.makedirs(f'{results_dir}/{bigbench_gen_model}', exist_ok=True)
open(result_filename, 'w').write('running...')
deployer = Deployer(n_model_shards=n_model_shards, jax_seed=seed)
random.seed(seed)
bigbench_gens = JsonlDataset(
data_dir=f'{bigbench_gen_dir}/{bigbench_gen_model}')
with jax.default_device(jax.devices('cpu')[0]):
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
model = FlaxAutoModelForSequenceClassification.from_pretrained(
model_name_or_path)
model.params = model.to_fp32(model.params)
lr_schedule_fn = deployer.get_lr_schedule_fn(
train_size=train_size,
per_device_batch_size=per_device_batch_size,
n_epochs=1,
learning_rate=learning_rate,
schedule_type='linear',
warmup_rate=warmup_rate)
optimizer = optax.MultiSteps(
optax.adamw(learning_rate=lr_schedule_fn, weight_decay=weight_decay),
every_k_schedule=accumulate_grad_batches)
trainer = Trainer(
deployer=deployer,
collate_fn=partial(
collate_fn,
src_key=src_key,
tgt_key=tgt_key,
label_key=label_key,
tokenizer=tokenizer,
max_length=max_length),
apply_fn=model,
loss_fn=loss_fn,
params=model.params,
optimizer=optimizer,
lr_schedule_fn=lr_schedule_fn,
accumulate_grad_batches=accumulate_grad_batches,
params_sharding_rules=deployer.get_sharding_rules(params=model.params))
predictor = trainer.get_default_predictor(
pred_fn=partial(pred_fn, model=model))
cappy_dataset = get_cappy_dataset(
bigbench_gens=bigbench_gens,
subset_name=bigbench_subset_name,
src_key=src_key,
tgt_key=tgt_key,
refs_key=refs_key,
label_key=label_key,
train_size=train_size)
trainer.train(
examples=cappy_dataset['train'],
per_device_batch_size=per_device_batch_size)
cappy_scores = predictor.predict(
examples=cappy_dataset['validation'],
per_device_batch_size=eval_per_device_batch_size,
params=trainer.params,
params_meshed=(n_model_shards > 1))
best_scores = \
[float('-inf') for _ in range(len(cappy_dataset['validation']))]
preds = [None for _ in range(len(cappy_dataset['validation']))]
for example, cappy_score in zip(
cappy_dataset['validation'], cappy_scores):
example_idx = example['example_idx']
if cappy_score > best_scores[example_idx]:
best_scores[example_idx] = cappy_score
preds[example_idx] = example[tgt_key]
result = eval_rouge(
examples=bigbench_gens[f'{bigbench_subset_name}_validation'],
preds=preds,
refs_key=refs_key)
json.dump({'rougeL': result}, open(result_filename, 'w'))
print(f'Cappy + {bigbench_gen_model} on {bigbench_subset_name}: {result}')
if __name__ == '__main__':
fire.Fire(main)