|
| 1 | +/* |
| 2 | + * Copyright (C) 2019 Swift Navigation Inc. |
| 3 | + * Contact: Swift Navigation <[email protected]> |
| 4 | + * |
| 5 | + * This source is subject to the license found in the file 'LICENSE' which must |
| 6 | + * be distributed together with this source. All other rights reserved. |
| 7 | + * |
| 8 | + * THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, |
| 9 | + * EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED |
| 10 | + * WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE. |
| 11 | + */ |
| 12 | + |
| 13 | +#ifndef ALBATROSS_SRC_MODELS_NEAREST_NEIGHBOR_MODEL_HPP_ |
| 14 | +#define ALBATROSS_SRC_MODELS_NEAREST_NEIGHBOR_MODEL_HPP_ |
| 15 | + |
| 16 | +namespace albatross { |
| 17 | + |
| 18 | +template <typename DistanceMetric> class NearestNeighborModel; |
| 19 | + |
| 20 | +template <typename FeatureType> struct NearestNeighborFit; |
| 21 | + |
| 22 | +template <typename FeatureType> struct Fit<NearestNeighborFit<FeatureType>> { |
| 23 | + |
| 24 | + Fit() : training_data(){}; |
| 25 | + |
| 26 | + Fit(const RegressionDataset<FeatureType> &dataset) : training_data(dataset){}; |
| 27 | + |
| 28 | + bool operator==(const Fit<NearestNeighborFit<FeatureType>> &other) const { |
| 29 | + return training_data == other.training_data; |
| 30 | + } |
| 31 | + |
| 32 | + RegressionDataset<FeatureType> training_data; |
| 33 | +}; |
| 34 | + |
| 35 | +template <typename DistanceMetric> |
| 36 | +class NearestNeighborModel |
| 37 | + : public ModelBase<NearestNeighborModel<DistanceMetric>> { |
| 38 | + |
| 39 | +public: |
| 40 | + NearestNeighborModel() : distance_metric(){}; |
| 41 | + |
| 42 | + std::string get_name() const { return "nearest_neighbor_model"; }; |
| 43 | + |
| 44 | + template <typename FeatureType> |
| 45 | + Fit<NearestNeighborFit<FeatureType>> |
| 46 | + _fit_impl(const std::vector<FeatureType> &features, |
| 47 | + const MarginalDistribution &targets) const { |
| 48 | + return Fit<NearestNeighborFit<FeatureType>>( |
| 49 | + RegressionDataset<FeatureType>(features, targets)); |
| 50 | + } |
| 51 | + |
| 52 | + template <typename FeatureType> |
| 53 | + auto fit_from_prediction(const std::vector<FeatureType> &features, |
| 54 | + const JointDistribution &prediction) const { |
| 55 | + const NearestNeighborModel<DistanceMetric> m(*this); |
| 56 | + MarginalDistribution marginal_pred( |
| 57 | + prediction.mean, prediction.covariance.diagonal().asDiagonal()); |
| 58 | + Fit<NearestNeighborFit<FeatureType>> fit = { |
| 59 | + RegressionDataset<FeatureType>(features, marginal_pred)}; |
| 60 | + FitModel<NearestNeighborModel, Fit<NearestNeighborFit<FeatureType>>> |
| 61 | + fit_model(m, fit); |
| 62 | + return fit_model; |
| 63 | + } |
| 64 | + |
| 65 | + template <typename FeatureType> |
| 66 | + MarginalDistribution |
| 67 | + _predict_impl(const std::vector<FeatureType> &features, |
| 68 | + const Fit<NearestNeighborFit<FeatureType>> &fit, |
| 69 | + PredictTypeIdentity<MarginalDistribution> &&) const { |
| 70 | + const Eigen::Index n = static_cast<Eigen::Index>(features.size()); |
| 71 | + Eigen::VectorXd mean = Eigen::VectorXd::Zero(n); |
| 72 | + mean.fill(NAN); |
| 73 | + Eigen::VectorXd variance = Eigen::VectorXd::Zero(n); |
| 74 | + variance.fill(NAN); |
| 75 | + |
| 76 | + for (std::size_t i = 0; i < features.size(); ++i) { |
| 77 | + const auto min_index = |
| 78 | + index_with_min_distance(features[i], fit.training_data.features); |
| 79 | + mean[i] = fit.training_data.targets.mean[min_index]; |
| 80 | + variance[i] = fit.training_data.targets.get_diagonal(min_index); |
| 81 | + } |
| 82 | + |
| 83 | + if (fit.training_data.targets.has_covariance()) { |
| 84 | + return MarginalDistribution(mean, variance.asDiagonal()); |
| 85 | + } else { |
| 86 | + return MarginalDistribution(mean); |
| 87 | + } |
| 88 | + } |
| 89 | + |
| 90 | +private: |
| 91 | + template <typename FeatureType> |
| 92 | + std::size_t |
| 93 | + index_with_min_distance(const FeatureType &ref, |
| 94 | + const std::vector<FeatureType> &features) const { |
| 95 | + assert(features.size() > 0); |
| 96 | + |
| 97 | + std::size_t min_index = 0; |
| 98 | + double min_distance = distance_metric(ref, features[0]); |
| 99 | + |
| 100 | + for (std::size_t i = 1; i < features.size(); ++i) { |
| 101 | + const double dist = distance_metric(ref, features[i]); |
| 102 | + if (dist < min_distance) { |
| 103 | + min_index = i; |
| 104 | + min_distance = dist; |
| 105 | + } |
| 106 | + } |
| 107 | + return min_index; |
| 108 | + } |
| 109 | + |
| 110 | + DistanceMetric distance_metric; |
| 111 | +}; |
| 112 | + |
| 113 | +} // namespace albatross |
| 114 | + |
| 115 | +#endif // ALBATROSS_SRC_MODELS_NEAREST_NEIGHBOR_MODEL_HPP_ |
0 commit comments