-
Notifications
You must be signed in to change notification settings - Fork 2
/
shortest_common_supersequence.cpp
89 lines (65 loc) · 1.71 KB
/
shortest_common_supersequence.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
/*
Given two strings str1 and str2, find the length of the smallest string which has both, str1 and str2 as its sub-sequences.
Note: str1 and str2 can have both uppercase and lowercase letters.
Input:
The first line of input contains an integer T denoting the number of test cases. Each test case contains two space-separated strings.
Output:
For each testcase, in a new line, output the length of the required string.
Expected Time Complexity: O(Length(str1) * Length(str2)).
Expected Auxiliary Space: O(Length(str1) * Length(str2)).
Constraints:
1 <= T <= 100
1<= |str1|, |str2| <= 100
Example:
Input:
2
abcd xycd
efgh jghi
Output:
6
6
Explanation:
Test Case 1: One of the shortest answer can be abxycd, which is of length 6.
*/
#include<bits/stdc++.h>
using namespace std;
int LCS(string s1, string s2, int n, int m){
int dp[n+1][m+1];
for(int i=0;i<n+1;i++) dp[i][0]=0;
for(int j=0;j<m+1;j++) dp[0][j]=0;
for(int i=1;i<n+1;i++){
for(int j=1;j<m+1;j++){
if(s1[i-1]==s2[j-1])
dp[i][j]=1 + dp[i-1][j-1];
else dp[i][j]=max(dp[i][j-1], dp[i-1][j]);
}
}
return dp[n][m];
}
int main(){
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
int t;
cin>>t;
while(t--){
string s1,s2;
cin>>s1>>s2;
int n=s1.length();
int m=s2.length();
cout<<n+m-LCS(s1,s2,n,m)<<endl;
}
return 0;
}
/*
Alternative Approach
int superSeq(string X, string Y, int m, int n)
{
if (!m) return n;
if (!n) return m;
if (X[m - 1] == Y[n - 1])
return 1 + superSeq(X, Y, m - 1, n - 1);
return 1 + min(superSeq(X, Y, m - 1, n),
superSeq(X, Y, m, n - 1));
}
*/