-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
364 lines (321 loc) · 13.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
import os
import time
import argparse
import shutil
import math
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torch.optim as optim
import numpy as np
from dataset import cifar10,cifar100
from tensorboardX import SummaryWriter
from models.resnet_imagenet import resnet50, resnet50_X
from models.vgg_cifar import vgg16,vgg16_X
from models.resnet_cifar import resnet20,resnet20_X,resnet44,resnet44_X,resnet110,resnet110_X,resnet56,resnet56_X
from models.googlenet import googlenet,googlenet_X
from utils.utils import accuracy, AverageMeter, progress_bar
from thop import profile
from torch.utils.data import DataLoader
def parse_args():
parser = argparse.ArgumentParser(description='finetune')
parser.add_argument('--model', default=None, type=str, help='name of the model to train')
parser.add_argument('--dataset', default=None, type=str, help='name of the dataset to train')
parser.add_argument('--lr', default=0.01, type=float, help='learning rate')
parser.add_argument('--n_gpu', default=1, type=int, help='number of GPUs to use')
parser.add_argument('--batch_size', default=128, type=int, help='batch size')
parser.add_argument('--n_worker', default=8, type=int, help='number of data loader worker')
parser.add_argument('--lr_type', default='cos', type=str, help='lr scheduler (exp/cos/step3/fixed)')
parser.add_argument('--n_epoch', default=350, type=int, help='number of epochs to train')
parser.add_argument('--wd', default=2e-4, type=float, help='weight decay')
parser.add_argument('--seed', default=None, type=int, help='random seed to set')
parser.add_argument('--cfg', default=None,type=str, help='channel number of each layer')
parser.add_argument('--data_root', default=None, type=str, help='dataset path')
# resume
parser.add_argument('--ckpt_path', default=None, type=str, help='checkpoint path to resume from')
# run eval
parser.add_argument('--eval', action='store_true', help='Simply run eval')
parser.add_argument('--mixup', default=False,action='store_true', help='use mixup data augmentation')
parser.add_argument('--prune_layer', nargs="+", default=None, help='layer to prune')
parser.add_argument('--data_path',type=str,default=None,help='The dictionary where the input is stored. default:')
return parser.parse_args()
def get_model():
print('=> Building model..')
if args.model == 'vgg16':
net = vgg16()
elif args.model == 'vgg16_X':
net = vgg16_X(eval(args.cfg))
elif args.model == 'resnet20':
net = resnet20()
elif args.model == 'resnet20_X':
net = resnet20_X(eval(args.cfg))
elif args.model == 'resnet56_X':
net = resnet56_X(eval(args.cfg))
elif args.model == 'resnet56':
net = resnet56()
elif args.model == 'resnet50':
net = resnet50()
elif args.model == 'resnet50_X':
net = resnet50_X(eval(args.cfg))
elif args.model == 'resnet110':
net = resnet110()
elif args.model == 'resnet110_X':
net = resnet110_X(eval(args.cfg))
elif args.model == 'resnet44':
net = resnet44()
elif args.model == 'resnet44_X':
net = resnet44_X(eval(args.cfg))
elif args.model == 'resnet50':
net = resnet50()
elif args.model == 'resnet50_X':
net = resnet50_X(eval(args.cfg))
elif args.model == 'googlenet':
net = googlenet()
elif args.model == 'googlenet_X':
net = googlenet_X(eval(args.cfg))
else:
raise NotImplementedError
return net.cuda() if use_cuda else net
def mixup_data(x, y, alpha=0.086, use_cuda=True):
'''Returns mixed inputs, pairs of targets, and lambda'''
if alpha > 0:
lam = np.random.beta(alpha, alpha)
else:
lam = 1
batch_size = x.size()[0]
if use_cuda:
index = torch.randperm(batch_size).cuda()
else:
index = torch.randperm(batch_size)
mixed_x = lam * x + (1 - lam) * x[index, :]
y_a, y_b = y, y[index]
return mixed_x, y_a, y_b, lam
def mixup_criterion(criterion, pred, y_a, y_b, lam):
return lam * criterion(pred, y_a) + (1 - lam) * criterion(pred, y_b)
def train(epoch, train_loader):
print('\nEpoch: %d' % epoch)
net.train()
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
end = time.time()
for batch_idx, (inputs, targets) in enumerate(train_loader):
optimizer.zero_grad()
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
if not args.mixup:
outputs = net(inputs)
loss = criterion(outputs, targets)
else:
inputs, targets_a, targets_b, lam = mixup_data(inputs, targets, use_cuda=use_cuda)
outputs = net(inputs)
loss = mixup_criterion(criterion, outputs, targets_a, targets_b, lam)
loss.backward()
optimizer.step()
# measure accuracy and record loss
prec1, prec5 = accuracy(outputs.data, targets.data, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
if not args.mixup:
top1.update(prec1.item(), inputs.size(0))
else:
_, predicted = torch.max(outputs.data, 1)
prec1 = (lam * predicted.eq(targets_a.data).cpu().sum().float()
+ (1 - lam) * predicted.eq(targets_b.data).cpu().sum().float())
prec1 = prec1 * 100 / inputs.size(0)
top1.update(prec1, inputs.size(0))
top5.update(prec5.item(), inputs.size(0))
# timing
batch_time.update(time.time() - end)
end = time.time()
progress_bar(batch_idx, len(train_loader), 'Loss: {:.3f} | Acc1: {:.3f}% | Acc5: {:.3f}%'
.format(losses.avg, top1.avg, top5.avg))
# disp_mask(net, args.prune_layer)
writer.add_scalar('loss/train', losses.avg, epoch)
writer.add_scalar('acc/train_top1', top1.avg, epoch)
writer.add_scalar('acc/train_top5', top5.avg, epoch)
def test(epoch, test_loader, save=True):
global best_acc
net.eval()
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
end = time.time()
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(test_loader):
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
outputs = net(inputs)
loss = criterion(outputs, targets)
# measure accuracy and record loss
prec1, prec5 = accuracy(outputs.data, targets.data, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1.update(prec1.item(), inputs.size(0))
top5.update(prec5.item(), inputs.size(0))
# timing
batch_time.update(time.time() - end)
end = time.time()
progress_bar(batch_idx, len(test_loader), 'Loss: {:.3f} | Acc1: {:.3f}% | Acc5: {:.3f}%'
.format(losses.avg, top1.avg, top5.avg))
if save:
writer.add_scalar('loss/test', losses.avg, epoch)
writer.add_scalar('acc/test_top1', top1.avg, epoch)
writer.add_scalar('acc/test_top5', top5.avg, epoch)
is_best = False
if top1.avg > best_acc:
best_acc = top1.avg
is_best = True
print('Current best acc: {}'.format(best_acc))
save_checkpoint({
'epoch': epoch,
'model': args.model,
'dataset': args.dataset,
'state_dict': net.module.state_dict() if isinstance(net, nn.DataParallel) else net.state_dict(),
'acc': top1.avg,
'optimizer': optimizer.state_dict(),
}, is_best, checkpoint_dir=log_dir)
def adjust_learning_rate(optimizer, epoch):
if args.lr_type == 'cos': # cos without warm-up
lr = 0.5 * args.lr * (1 + math.cos(math.pi * epoch / args.n_epoch))
elif args.lr_type == 'exp':
step = 1
decay = 0.96
lr = args.lr * (decay ** (epoch // step))
elif args.lr_type == 'fixed':
lr = args.lr
else:
raise NotImplementedError
print('=> lr: {}'.format(lr))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
def save_checkpoint(state, is_best, checkpoint_dir='.'):
filename = os.path.join(checkpoint_dir, 'ckpt.pth.tar')
print('=> Saving checkpoint to {}'.format(filename))
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, filename.replace('.pth.tar', '.best.pth.tar'))
def get_output_folder(parent_dir, env_name):
"""Return save folder.
Assumes folders in the parent_dir have suffix -run{run
number}. Finds the highest run number and sets the output folder
to that number + 1. This is just convenient so that if you run the
same script multiple times tensorboard can plot all of the results
on the same plots with different names.
Parameters
----------
parent_dir: str
Path of the directory containing all experiment runs.
Returns
-------
parent_dir/run_dir
Path to this run's save directory.
"""
os.makedirs(parent_dir, exist_ok=True)
experiment_id = 0
for folder_name in os.listdir(parent_dir):
if not os.path.isdir(os.path.join(parent_dir, folder_name)):
continue
try:
folder_name = int(folder_name.split('-run')[-1])
if folder_name > experiment_id:
experiment_id = folder_name
except:
pass
experiment_id += 1
parent_dir = os.path.join(parent_dir, env_name)
parent_dir = parent_dir + '-run{}'.format(experiment_id)
os.makedirs(parent_dir, exist_ok=True)
return parent_dir
if __name__ == '__main__':
args = parse_args()
args.gpus=[0,1,2,3]
use_cuda = torch.cuda.is_available()
if use_cuda:
torch.backends.cudnn.benchmark = True
device = 'cuda' if use_cuda else 'cpu'
best_acc = 0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
if args.seed is not None:
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
print('=> Preparing data..')
if args.dataset == "cifar10":
loader = cifar10.Data(args)
train_loader=loader.trainLoader
test_loader=loader.testLoader
elif args.dataset == "cifar100":
loader = cifar100.Data(args)
train_loader=loader.trainLoader
test_loader=loader.testLoader
elif args.dataset == "imagenet":
traindir = os.path.join(args.data_path, 'train')
valdir = os.path.join(args.data_path, 'val')
scale_size =224
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])
trainset = datasets.ImageFolder(
traindir,
transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.Resize(scale_size),
transforms.ToTensor(),
normalize,
]))
train_loader = DataLoader(trainset,batch_size=64,shuffle=True,num_workers=8,pin_memory=True)
testset = datasets.ImageFolder(
valdir,
transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.Resize(scale_size),
transforms.ToTensor(),
normalize,
]))
test_loader = DataLoader(
testset,
batch_size=64,
shuffle=False,
num_workers=8,
pin_memory=True)
net = get_model() # for measure
IMAGE_SIZE = 224 if args.dataset == 'imagenet' else 32
dummy = torch.rand((1, 3, IMAGE_SIZE, IMAGE_SIZE)).to(device)
n_flops, n_params = profile(net, (dummy, ), verbose=False)
print('=> Model Parameter: {:.3f} M, FLOPs: {:.3f}M'.format(n_params / 1e6, n_flops / 1e6))
del net
net = get_model()
if args.ckpt_path is not None: # assigned checkpoint path to resume from
print('=> Resuming from checkpoint..')
checkpoint = torch.load(args.ckpt_path)
checkpoint = checkpoint['state_dict'] if 'state_dict' in checkpoint else checkpoint
checkpoint = {k.replace('module.', ''): v for k, v in checkpoint.items()}
net.load_state_dict(checkpoint)
if use_cuda and args.n_gpu > 1:
net = torch.nn.DataParallel(net, list(range(args.n_gpu)))
elif use_cuda:
net.cuda()
criterion = nn.CrossEntropyLoss()
print('Using SGD...')
print('weight decay = {}'.format(args.wd))
optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=0.9, weight_decay=args.wd)
if args.eval: # just run eval
print('=> Start evaluation...')
test(0, test_loader, save=False)
else: # train
print('=> Start training...')
print('Training {} on {}...'.format(args.model, args.dataset))
log_dir = get_output_folder('./logs', '{}_{}_finetune'.format(args.model, args.dataset))
print('=> Saving logs to {}'.format(log_dir))
# tf writer
writer = SummaryWriter(logdir=log_dir)
for epoch in range(start_epoch, start_epoch + args.n_epoch):
lr = adjust_learning_rate(optimizer, epoch)
train(epoch, train_loader)
test(epoch, test_loader)
writer.close()
print('=> Model Parameter: {:.3f} M, FLOPs: {:.3f}M, best top-1 acc: {}%'.format(n_params / 1e6,
n_flops / 1e6, best_acc))