-
Notifications
You must be signed in to change notification settings - Fork 320
/
Copy pathlra.py
690 lines (615 loc) · 24.8 KB
/
lra.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
"""Long Range Arena datasets."""
import io
import logging
import os
import pickle
from pathlib import Path
import torch
from torch import nn
import torch.nn.functional as F
import torchtext
import torchvision
from einops.layers.torch import Rearrange, Reduce
from PIL import Image # Only used for Pathfinder
from datasets import DatasetDict, Value, load_dataset
from src.dataloaders.base import default_data_path, SequenceDataset, ImageResolutionSequenceDataset
class IMDB(SequenceDataset):
_name_ = "imdb"
d_output = 2
l_output = 0
@property
def init_defaults(self):
return {
"l_max": 4096,
"level": "char",
"min_freq": 15,
"seed": 42,
"val_split": 0.0,
"append_bos": False,
"append_eos": True,
# 'max_vocab': 135,
"n_workers": 4, # Only used for tokenizing dataset before caching
}
@property
def n_tokens(self):
return len(self.vocab)
def prepare_data(self):
if self.cache_dir is None: # Just download the dataset
load_dataset(self._name_, cache_dir=self.data_dir)
else: # Process the dataset and save it
self.process_dataset()
def setup(self, stage=None):
"""If cache_dir is not None, we'll cache the processed dataset there."""
self.data_dir = self.data_dir or default_data_path / self._name_
self.cache_dir = self.data_dir / "cache"
assert self.level in [
"word",
"char",
], f"level {self.level} not supported"
if stage == "test" and hasattr(self, "dataset_test"):
return
dataset, self.tokenizer, self.vocab = self.process_dataset()
print(
f"IMDB {self.level} level | min_freq {self.min_freq} | vocab size {len(self.vocab)}"
)
dataset.set_format(type="torch", columns=["input_ids", "label"])
# Create all splits
dataset_train, self.dataset_test = dataset["train"], dataset["test"]
if self.val_split == 0.0:
# Use test set as val set, as done in the LRA paper
self.dataset_train, self.dataset_val = dataset_train, None
else:
train_val = dataset_train.train_test_split(
test_size=self.val_split, seed=self.seed
)
self.dataset_train, self.dataset_val = (
train_val["train"],
train_val["test"],
)
def _collate_fn(self, batch):
xs, ys = zip(*[(data["input_ids"], data["label"]) for data in batch])
lengths = torch.tensor([len(x) for x in xs])
xs = nn.utils.rnn.pad_sequence(
xs, padding_value=self.vocab["<pad>"], batch_first=True
)
ys = torch.tensor(ys)
return xs, ys, {"lengths": lengths}
# self._collate_fn = collate_batch
def process_dataset(self):
cache_dir = (
None if self.cache_dir is None else self.cache_dir / self._cache_dir_name
)
if cache_dir is not None:
if cache_dir.is_dir():
return self._load_from_cache(cache_dir)
dataset = load_dataset(self._name_, cache_dir=self.data_dir)
dataset = DatasetDict(train=dataset["train"], test=dataset["test"])
if self.level == "word":
tokenizer = torchtext.data.utils.get_tokenizer(
"spacy", language="en_core_web_sm"
)
else: # self.level == 'char'
tokenizer = list # Just convert a string to a list of chars
# Account for <bos> and <eos> tokens
l_max = self.l_max - int(self.append_bos) - int(self.append_eos)
tokenize = lambda example: {"tokens": tokenizer(example["text"])[:l_max]}
dataset = dataset.map(
tokenize,
remove_columns=["text"],
keep_in_memory=True,
load_from_cache_file=False,
num_proc=max(self.n_workers, 1),
)
vocab = torchtext.vocab.build_vocab_from_iterator(
dataset["train"]["tokens"],
min_freq=self.min_freq,
specials=(
["<pad>", "<unk>"]
+ (["<bos>"] if self.append_bos else [])
+ (["<eos>"] if self.append_eos else [])
),
)
vocab.set_default_index(vocab["<unk>"])
numericalize = lambda example: {
"input_ids": vocab(
(["<bos>"] if self.append_bos else [])
+ example["tokens"]
+ (["<eos>"] if self.append_eos else [])
)
}
dataset = dataset.map(
numericalize,
remove_columns=["tokens"],
keep_in_memory=True,
load_from_cache_file=False,
num_proc=max(self.n_workers, 1),
)
if cache_dir is not None:
self._save_to_cache(dataset, tokenizer, vocab, cache_dir)
return dataset, tokenizer, vocab
def _save_to_cache(self, dataset, tokenizer, vocab, cache_dir):
cache_dir = self.cache_dir / self._cache_dir_name
logger = logging.getLogger(__name__)
logger.info(f"Saving to cache at {str(cache_dir)}")
dataset.save_to_disk(str(cache_dir))
with open(cache_dir / "tokenizer.pkl", "wb") as f:
pickle.dump(tokenizer, f)
with open(cache_dir / "vocab.pkl", "wb") as f:
pickle.dump(vocab, f)
def _load_from_cache(self, cache_dir):
assert cache_dir.is_dir()
logger = logging.getLogger(__name__)
logger.info(f"Load from cache at {str(cache_dir)}")
dataset = DatasetDict.load_from_disk(str(cache_dir))
with open(cache_dir / "tokenizer.pkl", "rb") as f:
tokenizer = pickle.load(f)
with open(cache_dir / "vocab.pkl", "rb") as f:
vocab = pickle.load(f)
return dataset, tokenizer, vocab
@property
def _cache_dir_name(self):
return f"l_max-{self.l_max}-level-{self.level}-min_freq-{self.min_freq}-append_bos-{self.append_bos}-append_eos-{self.append_eos}"
class TabularDataset(torch.utils.data.Dataset):
def __init__(
self,
path,
format,
col_idx=None,
skip_header=False,
csv_reader_params=None,
):
"""
col_idx: the indices of the columns.
"""
if csv_reader_params is None:
csv_reader_params = {}
format = format.lower()
assert format in ["tsv", "csv"]
with io.open(os.path.expanduser(path), encoding="utf8") as f:
if format == "csv":
reader = torchtext.utils.unicode_csv_reader(f, **csv_reader_params)
elif format == "tsv":
reader = torchtext.utils.unicode_csv_reader(
f, delimiter="\t", **csv_reader_params
)
else:
reader = f
if skip_header:
next(reader)
self._data = [
line if col_idx is None else [line[c] for c in col_idx]
for line in reader
]
def __len__(self):
return len(self._data)
def __getitem__(self, idx):
return self._data[idx]
# LRA tokenizer renames ']' to 'X' and delete parentheses as their tokenizer removes
# non-alphanumeric characters.
# https://github.com/google-research/long-range-arena/blob/264227cbf9591e39dd596d2dc935297a2070bdfe/lra_benchmarks/listops/input_pipeline.py#L46
def listops_tokenizer(s):
return s.translate({ord("]"): ord("X"), ord("("): None, ord(")"): None}).split()
class ListOps(SequenceDataset):
_name_ = "listops"
d_output = 10
l_output = 0
@property
def init_defaults(self):
return {
"l_max": 2048,
"append_bos": False,
"append_eos": True,
# 'max_vocab': 20, # Actual size 18
"n_workers": 4, # Only used for tokenizing dataset
}
@property
def n_tokens(self):
return len(self.vocab)
@property
def _cache_dir_name(self):
return f"l_max-{self.l_max}-append_bos-{self.append_bos}-append_eos-{self.append_eos}"
def init(self):
if self.data_dir is None:
self.data_dir = default_data_path / self._name_
self.cache_dir = self.data_dir / self._cache_dir_name
def prepare_data(self):
if self.cache_dir is None:
for split in ["train", "val", "test"]:
split_path = self.data_dir / f"basic_{split}.tsv"
if not split_path.is_file():
raise FileNotFoundError(
f"""
File {str(split_path)} not found.
To get the dataset, download lra_release.gz from
https://github.com/google-research/long-range-arena,
then unzip it with tar -xvf lra_release.gz.
Then point data_dir to the listops-1000 directory.
"""
)
else: # Process the dataset and save it
self.process_dataset()
def setup(self, stage=None):
if stage == "test" and hasattr(self, "dataset_test"):
return
dataset, self.tokenizer, self.vocab = self.process_dataset()
self.vocab_size = len(self.vocab)
dataset.set_format(type="torch", columns=["input_ids", "Target"])
self.dataset_train, self.dataset_val, self.dataset_test = (
dataset["train"],
dataset["val"],
dataset["test"],
)
def collate_batch(batch):
xs, ys = zip(*[(data["input_ids"], data["Target"]) for data in batch])
lengths = torch.tensor([len(x) for x in xs])
xs = nn.utils.rnn.pad_sequence(
xs, padding_value=self.vocab["<pad>"], batch_first=True
)
ys = torch.tensor(ys)
return xs, ys, {"lengths": lengths}
self._collate_fn = collate_batch
def process_dataset(self):
cache_dir = (
None if self.cache_dir is None else self.cache_dir / self._cache_dir_name
)
if cache_dir is not None:
if cache_dir.is_dir():
return self._load_from_cache(cache_dir)
dataset = load_dataset(
"csv",
data_files={
"train": str(self.data_dir / "basic_train.tsv"),
"val": str(self.data_dir / "basic_val.tsv"),
"test": str(self.data_dir / "basic_test.tsv"),
},
delimiter="\t",
keep_in_memory=True,
)
tokenizer = listops_tokenizer
# Account for <bos> and <eos> tokens
l_max = self.l_max - int(self.append_bos) - int(self.append_eos)
tokenize = lambda example: {"tokens": tokenizer(example["Source"])[:l_max]}
dataset = dataset.map(
tokenize,
remove_columns=["Source"],
keep_in_memory=True,
load_from_cache_file=False,
num_proc=max(self.n_workers, 1),
)
vocab = torchtext.vocab.build_vocab_from_iterator(
dataset["train"]["tokens"],
specials=(
["<pad>", "<unk>"]
+ (["<bos>"] if self.append_bos else [])
+ (["<eos>"] if self.append_eos else [])
),
)
vocab.set_default_index(vocab["<unk>"])
numericalize = lambda example: {
"input_ids": vocab(
(["<bos>"] if self.append_bos else [])
+ example["tokens"]
+ (["<eos>"] if self.append_eos else [])
)
}
dataset = dataset.map(
numericalize,
remove_columns=["tokens"],
keep_in_memory=True,
load_from_cache_file=False,
num_proc=max(self.n_workers, 1),
)
if cache_dir is not None:
self._save_to_cache(dataset, tokenizer, vocab, cache_dir)
return dataset, tokenizer, vocab
def _save_to_cache(self, dataset, tokenizer, vocab, cache_dir):
cache_dir = self.cache_dir / self._cache_dir_name
logger = logging.getLogger(__name__)
logger.info(f"Saving to cache at {str(cache_dir)}")
dataset.save_to_disk(str(cache_dir))
with open(cache_dir / "tokenizer.pkl", "wb") as f:
pickle.dump(tokenizer, f)
with open(cache_dir / "vocab.pkl", "wb") as f:
pickle.dump(vocab, f)
def _load_from_cache(self, cache_dir):
assert cache_dir.is_dir()
logger = logging.getLogger(__name__)
logger.info(f"Load from cache at {str(cache_dir)}")
dataset = DatasetDict.load_from_disk(str(cache_dir))
with open(cache_dir / "tokenizer.pkl", "rb") as f:
tokenizer = pickle.load(f)
with open(cache_dir / "vocab.pkl", "rb") as f:
vocab = pickle.load(f)
return dataset, tokenizer, vocab
class PathFinderDataset(torch.utils.data.Dataset):
"""Path Finder dataset."""
# There's an empty file in the dataset
blacklist = {"pathfinder32/curv_baseline/imgs/0/sample_172.png"}
def __init__(self, data_dir, transform=None):
"""
Args:
data_dir (string): Directory with all the images.
transform (callable, optional): Optional transform to be applied
on a sample.
"""
self.data_dir = Path(data_dir).expanduser()
assert self.data_dir.is_dir(), f"data_dir {str(self.data_dir)} does not exist"
self.transform = transform
samples = []
# for diff_level in ['curv_baseline', 'curv_contour_length_9', 'curv_contour_length_14']:
for diff_level in ["curv_contour_length_14"]:
path_list = sorted(
list((self.data_dir / diff_level / "metadata").glob("*.npy")),
key=lambda path: int(path.stem),
)
assert path_list, "No metadata found"
for metadata_file in path_list:
with open(metadata_file, "r") as f:
for metadata in f.read().splitlines():
metadata = metadata.split()
image_path = Path(diff_level) / metadata[0] / metadata[1]
if (
str(Path(self.data_dir.stem) / image_path)
not in self.blacklist
):
label = int(metadata[3])
samples.append((image_path, label))
self.samples = samples
def __len__(self):
return len(self.samples)
def __getitem__(self, idx):
path, target = self.samples[idx]
# https://github.com/pytorch/vision/blob/9b29f3f22783112406d9c1a6db47165a297c3942/torchvision/datasets/folder.py#L247
with open(self.data_dir / path, "rb") as f:
sample = Image.open(f).convert("L") # Open in grayscale
if self.transform is not None:
sample = self.transform(sample)
return sample, target
class PathFinder(ImageResolutionSequenceDataset):
_name_ = "pathfinder"
d_input = 1
d_output = 2
l_output = 0
@property
def n_tokens(self):
if self.tokenize:
return 256
@property
def init_defaults(self):
return {
"resolution": 32,
"sequential": True,
"tokenize": False,
"center": True,
"pool": 1,
"val_split": 0.1,
"test_split": 0.1,
"seed": 42, # Controls the train/val/test split
}
def default_transforms(self):
transform_list = [torchvision.transforms.ToTensor()]
if self.pool > 1:
transform_list.append(
Reduce(
"1 (h h2) (w w2) -> 1 h w",
"mean",
h2=self.pool,
w2=self.pool,
)
)
if self.tokenize:
transform_list.append(
torchvision.transforms.Lambda(lambda x: (x * 255).long())
)
else:
if self.center:
transform_list.append(torchvision.transforms.Normalize(mean=0.5, std=0.5))
if self.sequential:
# If tokenize, it makes more sense to get rid of the channel dimension
transform_list.append(
Rearrange("1 h w -> (h w)")
if self.tokenize
else Rearrange("1 h w -> (h w) 1")
)
else:
transform_list.append(Rearrange("1 h w -> h w 1"))
return torchvision.transforms.Compose(transform_list)
def prepare_data(self):
if not self.data_dir.is_dir():
raise FileNotFoundError(
f"""
Directory {str(self.data_dir)} not found.
To get the dataset, download lra_release.gz from
https://github.com/google-research/long-range-arena,
then unzip it with tar -xvf lra_release.gz.
Then point data_dir to the pathfinderX directory, where X is either 32, 64, 128, or 256.
"""
)
def setup(self, stage=None):
if self.data_dir is None:
self.data_dir = (
default_data_path / self._name_ / f"pathfinder{self.resolution}"
)
if stage == "test" and hasattr(self, "dataset_test"):
return
# [2021-08-18] TD: I ran into RuntimeError: Too many open files.
# https://github.com/pytorch/pytorch/issues/11201
torch.multiprocessing.set_sharing_strategy("file_system")
dataset = PathFinderDataset(self.data_dir, transform=self.default_transforms())
len_dataset = len(dataset)
val_len = int(self.val_split * len_dataset)
test_len = int(self.test_split * len_dataset)
train_len = len_dataset - val_len - test_len
(
self.dataset_train,
self.dataset_val,
self.dataset_test,
) = torch.utils.data.random_split(
dataset,
[train_len, val_len, test_len],
generator=torch.Generator().manual_seed(self.seed),
)
class AAN(SequenceDataset):
_name_ = "aan"
d_output = 2 # Use accuracy instead of binary_accuracy
l_output = 0
@property
def n_tokens(self):
return len(self.vocab)
@property
def init_defaults(self):
return {
"l_max": 4000,
# 'max_vocab': 100, # Full size 98
"append_bos": False,
"append_eos": True,
"n_workers": 4, # For tokenizing only
}
@property
def _cache_dir_name(self):
return f"l_max-{self.l_max}-append_bos-{self.append_bos}-append_eos-{self.append_eos}"
def init(self):
if self.data_dir is None:
self.data_dir = default_data_path / self._name_
self.cache_dir = self.data_dir / self._cache_dir_name
def prepare_data(self):
if self.cache_dir is None:
for split in ["train", "eval", "test"]:
split_path = self.data_dir / f"new_aan_pairs.{split}.tsv"
if not split_path.is_file():
raise FileNotFoundError(
f"""
File {str(split_path)} not found.
To get the dataset, download lra_release.gz from
https://github.com/google-research/long-range-arena,
then unzip it with tar -xvf lra_release.gz.
Then point data_dir to the tsv_data directory.
"""
)
else: # Process the dataset and save it
self.process_dataset()
def setup(self, stage=None):
if stage == "test" and hasattr(self, "dataset_test"):
return
# [2021-08-18] TD: I ran into RuntimeError: Too many open files.
# https://github.com/pytorch/pytorch/issues/11201
torch.multiprocessing.set_sharing_strategy("file_system")
dataset, self.tokenizer, self.vocab = self.process_dataset()
# self.vocab_size = len(self.vocab)
print("AAN vocab size:", len(self.vocab))
dataset.set_format(type="torch", columns=["input_ids1", "input_ids2", "label"])
self.dataset_train, self.dataset_val, self.dataset_test = (
dataset["train"],
dataset["val"],
dataset["test"],
)
def collate_batch(batch):
xs1, xs2, ys = zip(
*[
(data["input_ids1"], data["input_ids2"], data["label"])
for data in batch
]
)
lengths1 = torch.tensor([len(x) for x in xs1])
lengths2 = torch.tensor([len(x) for x in xs2])
xs1 = nn.utils.rnn.pad_sequence(
xs1, padding_value=self.vocab["<pad>"], batch_first=True
)
xs2 = nn.utils.rnn.pad_sequence(
xs2, padding_value=self.vocab["<pad>"], batch_first=True
)
# Pad both to same length
# Shape (batch, length)
L = max(xs1.size(1), xs2.size(1))
xs1 = F.pad(xs1, (0, L-xs1.size(1)), value=self.vocab["<pad>"])
xs2 = F.pad(xs2, (0, L-xs2.size(1)), value=self.vocab["<pad>"])
ys = torch.tensor(ys)
# return xs1, xs2, ys, lengths1, lengths2
# Concatenate two batches
xs = torch.cat([xs1, xs2], dim=0)
lengths = torch.cat([lengths1, lengths2], dim=0)
return xs, ys, {"lengths": lengths}
self._collate_fn = collate_batch
def process_dataset(self):
cache_dir = (
None if self.cache_dir is None else self.cache_dir / self._cache_dir_name
)
if cache_dir is not None:
if cache_dir.is_dir():
return self._load_from_cache(cache_dir)
dataset = load_dataset(
"csv",
data_files={
"train": str(self.data_dir / "new_aan_pairs.train.tsv"),
"val": str(self.data_dir / "new_aan_pairs.eval.tsv"),
"test": str(self.data_dir / "new_aan_pairs.test.tsv"),
},
delimiter="\t",
column_names=["label", "input1_id", "input2_id", "text1", "text2"],
keep_in_memory=True,
) # True)
dataset = dataset.remove_columns(["input1_id", "input2_id"])
new_features = dataset["train"].features.copy()
new_features["label"] = Value("int32")
dataset = dataset.cast(new_features)
tokenizer = list # Just convert a string to a list of chars
# Account for <bos> and <eos> tokens
l_max = self.l_max - int(self.append_bos) - int(self.append_eos)
tokenize = lambda example: {
"tokens1": tokenizer(example["text1"])[:l_max],
"tokens2": tokenizer(example["text2"])[:l_max],
}
dataset = dataset.map(
tokenize,
remove_columns=["text1", "text2"],
keep_in_memory=True,
load_from_cache_file=False,
num_proc=max(self.n_workers, 1),
)
vocab = torchtext.vocab.build_vocab_from_iterator(
dataset["train"]["tokens1"] + dataset["train"]["tokens2"],
specials=(
["<pad>", "<unk>"]
+ (["<bos>"] if self.append_bos else [])
+ (["<eos>"] if self.append_eos else [])
),
)
vocab.set_default_index(vocab["<unk>"])
encode = lambda text: vocab(
(["<bos>"] if self.append_bos else [])
+ text
+ (["<eos>"] if self.append_eos else [])
)
numericalize = lambda example: {
"input_ids1": encode(example["tokens1"]),
"input_ids2": encode(example["tokens2"]),
}
dataset = dataset.map(
numericalize,
remove_columns=["tokens1", "tokens2"],
keep_in_memory=True,
load_from_cache_file=False,
num_proc=max(self.n_workers, 1),
)
if cache_dir is not None:
self._save_to_cache(dataset, tokenizer, vocab, cache_dir)
return dataset, tokenizer, vocab
def _save_to_cache(self, dataset, tokenizer, vocab, cache_dir):
cache_dir = self.cache_dir / self._cache_dir_name
logger = logging.getLogger(__name__)
logger.info(f"Saving to cache at {str(cache_dir)}")
dataset.save_to_disk(str(cache_dir))
with open(cache_dir / "tokenizer.pkl", "wb") as f:
pickle.dump(tokenizer, f)
with open(cache_dir / "vocab.pkl", "wb") as f:
pickle.dump(vocab, f)
def _load_from_cache(self, cache_dir):
assert cache_dir.is_dir()
logger = logging.getLogger(__name__)
logger.info(f"Load from cache at {str(cache_dir)}")
dataset = DatasetDict.load_from_disk(str(cache_dir))
with open(cache_dir / "tokenizer.pkl", "rb") as f:
tokenizer = pickle.load(f)
with open(cache_dir / "vocab.pkl", "rb") as f:
vocab = pickle.load(f)
return dataset, tokenizer, vocab