forked from scikit-learn/scikit-learn.github.io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_transforms.html
590 lines (487 loc) · 29.3 KB
/
data_transforms.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="generator" content="Docutils 0.17.1: http://docutils.sourceforge.net/" />
<meta property="og:title" content="6. Dataset transformations" />
<meta property="og:type" content="website" />
<meta property="og:url" content="https://scikit-learn/stable/data_transforms.html" />
<meta property="og:site_name" content="scikit-learn" />
<meta property="og:description" content="scikit-learn provides a library of transformers, which may clean (see Preprocessing data), reduce (see Unsupervised dimensionality reduction), expand (see Kernel Approximation) or generate (see Fea..." />
<meta property="og:image" content="https://scikit-learn.org/stable/_static/scikit-learn-logo-small.png" />
<meta property="og:image:alt" content="scikit-learn" />
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>6. Dataset transformations — scikit-learn 1.0.2 documentation</title>
<link rel="canonical" href="http://scikit-learn.org/stable/data_transforms.html" />
<link rel="shortcut icon" href="_static/favicon.ico"/>
<link rel="stylesheet" href="_static/css/vendor/bootstrap.min.css" type="text/css" />
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="_static/plot_directive.css" type="text/css" />
<link rel="stylesheet" href="_static/sg_gallery.css" type="text/css" />
<link rel="stylesheet" href="_static/sg_gallery-binder.css" type="text/css" />
<link rel="stylesheet" href="_static/sg_gallery-dataframe.css" type="text/css" />
<link rel="stylesheet" href="_static/sg_gallery-rendered-html.css" type="text/css" />
<link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
<script id="documentation_options" data-url_root="./" src="_static/documentation_options.js"></script>
<script src="_static/jquery.js"></script>
</head>
<body>
<nav id="navbar" class="sk-docs-navbar navbar navbar-expand-md navbar-light bg-light py-0">
<div class="container-fluid sk-docs-container px-0">
<a class="navbar-brand py-0" href="index.html">
<img
class="sk-brand-img"
src="_static/scikit-learn-logo-small.png"
alt="logo"/>
</a>
<button
id="sk-navbar-toggler"
class="navbar-toggler"
type="button"
data-toggle="collapse"
data-target="#navbarSupportedContent"
aria-controls="navbarSupportedContent"
aria-expanded="false"
aria-label="Toggle navigation"
>
<span class="navbar-toggler-icon"></span>
</button>
<div class="sk-navbar-collapse collapse navbar-collapse" id="navbarSupportedContent">
<ul class="navbar-nav mr-auto">
<li class="nav-item">
<a class="sk-nav-link nav-link" href="install.html">Install</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" href="user_guide.html">User Guide</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" href="modules/classes.html">API</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" href="auto_examples/index.html">Examples</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" target="_blank" rel="noopener noreferrer" href="https://blog.scikit-learn.org/">Community</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="getting_started.html" >Getting Started</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="tutorial/index.html" >Tutorial</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="whats_new/v1.0.html" >What's new</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="glossary.html" >Glossary</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="https://scikit-learn.org/dev/developers/index.html" target="_blank" rel="noopener noreferrer">Development</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="faq.html" >FAQ</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="support.html" >Support</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="related_projects.html" >Related packages</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="roadmap.html" >Roadmap</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="about.html" >About us</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="https://github.com/scikit-learn/scikit-learn" >GitHub</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="https://scikit-learn.org/dev/versions.html" >Other Versions and Download</a>
</li>
<li class="nav-item dropdown nav-more-item-dropdown">
<a class="sk-nav-link nav-link dropdown-toggle" href="#" id="navbarDropdown" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">More</a>
<div class="dropdown-menu" aria-labelledby="navbarDropdown">
<a class="sk-nav-dropdown-item dropdown-item" href="getting_started.html" >Getting Started</a>
<a class="sk-nav-dropdown-item dropdown-item" href="tutorial/index.html" >Tutorial</a>
<a class="sk-nav-dropdown-item dropdown-item" href="whats_new/v1.0.html" >What's new</a>
<a class="sk-nav-dropdown-item dropdown-item" href="glossary.html" >Glossary</a>
<a class="sk-nav-dropdown-item dropdown-item" href="https://scikit-learn.org/dev/developers/index.html" target="_blank" rel="noopener noreferrer">Development</a>
<a class="sk-nav-dropdown-item dropdown-item" href="faq.html" >FAQ</a>
<a class="sk-nav-dropdown-item dropdown-item" href="support.html" >Support</a>
<a class="sk-nav-dropdown-item dropdown-item" href="related_projects.html" >Related packages</a>
<a class="sk-nav-dropdown-item dropdown-item" href="roadmap.html" >Roadmap</a>
<a class="sk-nav-dropdown-item dropdown-item" href="about.html" >About us</a>
<a class="sk-nav-dropdown-item dropdown-item" href="https://github.com/scikit-learn/scikit-learn" >GitHub</a>
<a class="sk-nav-dropdown-item dropdown-item" href="https://scikit-learn.org/dev/versions.html" >Other Versions and Download</a>
</div>
</li>
</ul>
<div id="searchbox" role="search">
<div class="searchformwrapper">
<form class="search" action="search.html" method="get">
<input class="sk-search-text-input" type="text" name="q" aria-labelledby="searchlabel" />
<input class="sk-search-text-btn" type="submit" value="Go" />
</form>
</div>
</div>
</div>
</div>
</nav>
<div class="d-flex" id="sk-doc-wrapper">
<input type="checkbox" name="sk-toggle-checkbox" id="sk-toggle-checkbox">
<label id="sk-sidemenu-toggle" class="sk-btn-toggle-toc btn sk-btn-primary" for="sk-toggle-checkbox">Toggle Menu</label>
<div id="sk-sidebar-wrapper" class="border-right">
<div class="sk-sidebar-toc-wrapper">
<div class="sk-sidebar-toc-logo">
<a href="index.html">
<img
class="sk-brand-img"
src="_static/scikit-learn-logo-small.png"
alt="logo"/>
</a>
</div>
<div class="btn-group w-100 mb-2" role="group" aria-label="rellinks">
<a href="visualizations.html" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="5. Visualizations">Prev</a><a href="user_guide.html" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="User Guide">Up</a>
<a href="modules/compose.html" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="6.1. Pipelines and composite estimators">Next</a>
</div>
<div class="alert alert-danger p-1 mb-2" role="alert">
<p class="text-center mb-0">
<strong>scikit-learn 1.0.2</strong><br/>
<a href="http://scikit-learn.org/dev/versions.html">Other versions</a>
</p>
</div>
<div class="alert alert-warning p-1 mb-2" role="alert">
<p class="text-center mb-0">
Please <a class="font-weight-bold" href="about.html#citing-scikit-learn"><string>cite us</string></a> if you use the software.
</p>
</div>
<div class="sk-sidebar-toc">
<ul>
<li>
<a href="user_guide.html" class="sk-toc-active">User Guide</a>
</li>
<ul>
<li>
<a href="supervised_learning.html" class="">1. Supervised learning</a>
</li>
<li>
<a href="unsupervised_learning.html" class="">2. Unsupervised learning</a>
</li>
<li>
<a href="model_selection.html" class="">3. Model selection and evaluation</a>
</li>
<li>
<a href="inspection.html" class="">4. Inspection</a>
</li>
<li>
<a href="visualizations.html" class="">5. Visualizations</a>
</li>
<li>
<a href="" class="sk-toc-active">6. Dataset transformations</a>
<ul>
<li class="sk-toctree-l3">
<a href="modules/compose.html">6.1. Pipelines and composite estimators</a>
</li>
<li class="sk-toctree-l3">
<a href="modules/feature_extraction.html">6.2. Feature extraction</a>
</li>
<li class="sk-toctree-l3">
<a href="modules/preprocessing.html">6.3. Preprocessing data</a>
</li>
<li class="sk-toctree-l3">
<a href="modules/impute.html">6.4. Imputation of missing values</a>
</li>
<li class="sk-toctree-l3">
<a href="modules/unsupervised_reduction.html">6.5. Unsupervised dimensionality reduction</a>
</li>
<li class="sk-toctree-l3">
<a href="modules/random_projection.html">6.6. Random Projection</a>
</li>
<li class="sk-toctree-l3">
<a href="modules/kernel_approximation.html">6.7. Kernel Approximation</a>
</li>
<li class="sk-toctree-l3">
<a href="modules/metrics.html">6.8. Pairwise metrics, Affinities and Kernels</a>
</li>
<li class="sk-toctree-l3">
<a href="modules/preprocessing_targets.html">6.9. Transforming the prediction target (y)</a>
</li>
</ul>
</li>
<li>
<a href="datasets.html" class="">7. Dataset loading utilities</a>
</li>
<li>
<a href="computing.html" class="">8. Computing with scikit-learn</a>
</li>
<li>
<a href="modules/model_persistence.html" class="">9. Model persistence</a>
</li>
<li>
<a href="common_pitfalls.html" class="">10. Common pitfalls and recommended practices</a>
</li>
</ul>
</ul>
</div>
</div>
</div>
<div id="sk-page-content-wrapper">
<div class="sk-page-content container-fluid body px-md-3" role="main">
<style type="text/css">
div.body div.toctree-wrapper ul {
padding-left: 0;
}
div.body li.toctree-l1 {
padding: 0 0 0.5em 0;
list-style-type: none;
font-size: 150%;
font-weight: bold;
}
div.body li.toctree-l2 {
font-size: 70%;
list-style-type: square;
font-weight: normal;
margin-left: 40px;
}
div.body li.toctree-l3 {
font-size: 85%;
list-style-type: circle;
font-weight: normal;
margin-left: 40px;
}
div.body li.toctree-l4 {
margin-left: 40px;
}
</style><section id="dataset-transformations">
<span id="data-transforms"></span><h1><span class="section-number">6. </span>Dataset transformations<a class="headerlink" href="#dataset-transformations" title="Permalink to this headline">¶</a></h1>
<p>scikit-learn provides a library of transformers, which may clean (see
<a class="reference internal" href="modules/preprocessing.html#preprocessing"><span class="std std-ref">Preprocessing data</span></a>), reduce (see <a class="reference internal" href="modules/unsupervised_reduction.html#data-reduction"><span class="std std-ref">Unsupervised dimensionality reduction</span></a>), expand (see
<a class="reference internal" href="modules/kernel_approximation.html#kernel-approximation"><span class="std std-ref">Kernel Approximation</span></a>) or generate (see <a class="reference internal" href="modules/feature_extraction.html#feature-extraction"><span class="std std-ref">Feature extraction</span></a>)
feature representations.</p>
<p>Like other estimators, these are represented by classes with a <code class="docutils literal notranslate"><span class="pre">fit</span></code> method,
which learns model parameters (e.g. mean and standard deviation for
normalization) from a training set, and a <code class="docutils literal notranslate"><span class="pre">transform</span></code> method which applies
this transformation model to unseen data. <code class="docutils literal notranslate"><span class="pre">fit_transform</span></code> may be more
convenient and efficient for modelling and transforming the training data
simultaneously.</p>
<p>Combining such transformers, either in parallel or series is covered in
<a class="reference internal" href="modules/compose.html#combining-estimators"><span class="std std-ref">Pipelines and composite estimators</span></a>. <a class="reference internal" href="modules/metrics.html#metrics"><span class="std std-ref">Pairwise metrics, Affinities and Kernels</span></a> covers transforming feature
spaces into affinity matrices, while <a class="reference internal" href="modules/preprocessing_targets.html#preprocessing-targets"><span class="std std-ref">Transforming the prediction target (y)</span></a> considers
transformations of the target space (e.g. categorical labels) for use in
scikit-learn.</p>
<div class="toctree-wrapper compound">
<ul>
<li class="toctree-l1"><a class="reference internal" href="modules/compose.html">6.1. Pipelines and composite estimators</a><ul>
<li class="toctree-l2"><a class="reference internal" href="modules/compose.html#pipeline-chaining-estimators">6.1.1. Pipeline: chaining estimators</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/compose.html#transforming-target-in-regression">6.1.2. Transforming target in regression</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/compose.html#featureunion-composite-feature-spaces">6.1.3. FeatureUnion: composite feature spaces</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/compose.html#columntransformer-for-heterogeneous-data">6.1.4. ColumnTransformer for heterogeneous data</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/compose.html#visualizing-composite-estimators">6.1.5. Visualizing Composite Estimators</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="modules/feature_extraction.html">6.2. Feature extraction</a><ul>
<li class="toctree-l2"><a class="reference internal" href="modules/feature_extraction.html#loading-features-from-dicts">6.2.1. Loading features from dicts</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/feature_extraction.html#feature-hashing">6.2.2. Feature hashing</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/feature_extraction.html#text-feature-extraction">6.2.3. Text feature extraction</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/feature_extraction.html#image-feature-extraction">6.2.4. Image feature extraction</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="modules/preprocessing.html">6.3. Preprocessing data</a><ul>
<li class="toctree-l2"><a class="reference internal" href="modules/preprocessing.html#standardization-or-mean-removal-and-variance-scaling">6.3.1. Standardization, or mean removal and variance scaling</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/preprocessing.html#non-linear-transformation">6.3.2. Non-linear transformation</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/preprocessing.html#normalization">6.3.3. Normalization</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/preprocessing.html#encoding-categorical-features">6.3.4. Encoding categorical features</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/preprocessing.html#discretization">6.3.5. Discretization</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/preprocessing.html#imputation-of-missing-values">6.3.6. Imputation of missing values</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/preprocessing.html#generating-polynomial-features">6.3.7. Generating polynomial features</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/preprocessing.html#custom-transformers">6.3.8. Custom transformers</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="modules/impute.html">6.4. Imputation of missing values</a><ul>
<li class="toctree-l2"><a class="reference internal" href="modules/impute.html#univariate-vs-multivariate-imputation">6.4.1. Univariate vs. Multivariate Imputation</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/impute.html#univariate-feature-imputation">6.4.2. Univariate feature imputation</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/impute.html#multivariate-feature-imputation">6.4.3. Multivariate feature imputation</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/impute.html#references">6.4.4. References</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/impute.html#nearest-neighbors-imputation">6.4.5. Nearest neighbors imputation</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/impute.html#marking-imputed-values">6.4.6. Marking imputed values</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="modules/unsupervised_reduction.html">6.5. Unsupervised dimensionality reduction</a><ul>
<li class="toctree-l2"><a class="reference internal" href="modules/unsupervised_reduction.html#pca-principal-component-analysis">6.5.1. PCA: principal component analysis</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/unsupervised_reduction.html#random-projections">6.5.2. Random projections</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/unsupervised_reduction.html#feature-agglomeration">6.5.3. Feature agglomeration</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="modules/random_projection.html">6.6. Random Projection</a><ul>
<li class="toctree-l2"><a class="reference internal" href="modules/random_projection.html#the-johnson-lindenstrauss-lemma">6.6.1. The Johnson-Lindenstrauss lemma</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/random_projection.html#gaussian-random-projection">6.6.2. Gaussian random projection</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/random_projection.html#sparse-random-projection">6.6.3. Sparse random projection</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="modules/kernel_approximation.html">6.7. Kernel Approximation</a><ul>
<li class="toctree-l2"><a class="reference internal" href="modules/kernel_approximation.html#nystroem-method-for-kernel-approximation">6.7.1. Nystroem Method for Kernel Approximation</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/kernel_approximation.html#radial-basis-function-kernel">6.7.2. Radial Basis Function Kernel</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/kernel_approximation.html#additive-chi-squared-kernel">6.7.3. Additive Chi Squared Kernel</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/kernel_approximation.html#skewed-chi-squared-kernel">6.7.4. Skewed Chi Squared Kernel</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/kernel_approximation.html#polynomial-kernel-approximation-via-tensor-sketch">6.7.5. Polynomial Kernel Approximation via Tensor Sketch</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/kernel_approximation.html#mathematical-details">6.7.6. Mathematical Details</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="modules/metrics.html">6.8. Pairwise metrics, Affinities and Kernels</a><ul>
<li class="toctree-l2"><a class="reference internal" href="modules/metrics.html#cosine-similarity">6.8.1. Cosine similarity</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/metrics.html#linear-kernel">6.8.2. Linear kernel</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/metrics.html#polynomial-kernel">6.8.3. Polynomial kernel</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/metrics.html#sigmoid-kernel">6.8.4. Sigmoid kernel</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/metrics.html#rbf-kernel">6.8.5. RBF kernel</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/metrics.html#laplacian-kernel">6.8.6. Laplacian kernel</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/metrics.html#chi-squared-kernel">6.8.7. Chi-squared kernel</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="modules/preprocessing_targets.html">6.9. Transforming the prediction target (<code class="docutils literal notranslate"><span class="pre">y</span></code>)</a><ul>
<li class="toctree-l2"><a class="reference internal" href="modules/preprocessing_targets.html#label-binarization">6.9.1. Label binarization</a></li>
<li class="toctree-l2"><a class="reference internal" href="modules/preprocessing_targets.html#label-encoding">6.9.2. Label encoding</a></li>
</ul>
</li>
</ul>
</div>
</section>
</div>
<div class="container">
<footer class="sk-content-footer">
© 2007 - 2022, scikit-learn developers (BSD License).
<a href="_sources/data_transforms.rst.txt" rel="nofollow">Show this page source</a>
</footer>
</div>
</div>
</div>
<script src="_static/js/vendor/bootstrap.min.js"></script>
<script>
window.ga=window.ga||function(){(ga.q=ga.q||[]).push(arguments)};ga.l=+new Date;
ga('create', 'UA-22606712-2', 'auto');
ga('set', 'anonymizeIp', true);
ga('send', 'pageview');
</script>
<script async src='https://www.google-analytics.com/analytics.js'></script>
<script>
$(document).ready(function() {
/* Add a [>>>] button on the top-right corner of code samples to hide
* the >>> and ... prompts and the output and thus make the code
* copyable. */
var div = $('.highlight-python .highlight,' +
'.highlight-python3 .highlight,' +
'.highlight-pycon .highlight,' +
'.highlight-default .highlight')
var pre = div.find('pre');
// get the styles from the current theme
pre.parent().parent().css('position', 'relative');
var hide_text = 'Hide prompts and outputs';
var show_text = 'Show prompts and outputs';
// create and add the button to all the code blocks that contain >>>
div.each(function(index) {
var jthis = $(this);
if (jthis.find('.gp').length > 0) {
var button = $('<span class="copybutton">>>></span>');
button.attr('title', hide_text);
button.data('hidden', 'false');
jthis.prepend(button);
}
// tracebacks (.gt) contain bare text elements that need to be
// wrapped in a span to work with .nextUntil() (see later)
jthis.find('pre:has(.gt)').contents().filter(function() {
return ((this.nodeType == 3) && (this.data.trim().length > 0));
}).wrap('<span>');
});
// define the behavior of the button when it's clicked
$('.copybutton').click(function(e){
e.preventDefault();
var button = $(this);
if (button.data('hidden') === 'false') {
// hide the code output
button.parent().find('.go, .gp, .gt').hide();
button.next('pre').find('.gt').nextUntil('.gp, .go').css('visibility', 'hidden');
button.css('text-decoration', 'line-through');
button.attr('title', show_text);
button.data('hidden', 'true');
} else {
// show the code output
button.parent().find('.go, .gp, .gt').show();
button.next('pre').find('.gt').nextUntil('.gp, .go').css('visibility', 'visible');
button.css('text-decoration', 'none');
button.attr('title', hide_text);
button.data('hidden', 'false');
}
});
/*** Add permalink buttons next to glossary terms ***/
$('dl.glossary > dt[id]').append(function() {
return ('<a class="headerlink" href="#' +
this.getAttribute('id') +
'" title="Permalink to this term">¶</a>');
});
/*** Hide navbar when scrolling down ***/
// Returns true when headerlink target matches hash in url
(function() {
hashTargetOnTop = function() {
var hash = window.location.hash;
if ( hash.length < 2 ) { return false; }
var target = document.getElementById( hash.slice(1) );
if ( target === null ) { return false; }
var top = target.getBoundingClientRect().top;
return (top < 2) && (top > -2);
};
// Hide navbar on load if hash target is on top
var navBar = document.getElementById("navbar");
var navBarToggler = document.getElementById("sk-navbar-toggler");
var navBarHeightHidden = "-" + navBar.getBoundingClientRect().height + "px";
var $window = $(window);
hideNavBar = function() {
navBar.style.top = navBarHeightHidden;
};
showNavBar = function() {
navBar.style.top = "0";
}
if (hashTargetOnTop()) {
hideNavBar()
}
var prevScrollpos = window.pageYOffset;
hideOnScroll = function(lastScrollTop) {
if (($window.width() < 768) && (navBarToggler.getAttribute("aria-expanded") === 'true')) {
return;
}
if (lastScrollTop > 2 && (prevScrollpos <= lastScrollTop) || hashTargetOnTop()){
hideNavBar()
} else {
showNavBar()
}
prevScrollpos = lastScrollTop;
};
/*** high performance scroll event listener***/
var raf = window.requestAnimationFrame ||
window.webkitRequestAnimationFrame ||
window.mozRequestAnimationFrame ||
window.msRequestAnimationFrame ||
window.oRequestAnimationFrame;
var lastScrollTop = $window.scrollTop();
if (raf) {
loop();
}
function loop() {
var scrollTop = $window.scrollTop();
if (lastScrollTop === scrollTop) {
raf(loop);
return;
} else {
lastScrollTop = scrollTop;
hideOnScroll(lastScrollTop);
raf(loop);
}
}
})();
});
</script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml.js"></script>
<script src="https://scikit-learn.org/versionwarning.js"></script>
</body>
</html>