-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_confusion_matrix.py
executable file
·75 lines (61 loc) · 2.6 KB
/
plot_confusion_matrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import itertools
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm, datasets
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
# # import some data to play with
# iris = datasets.load_iris()
# X = iris.data
# y = iris.target
# class_names = iris.target_names
# # Split the data into a training set and a test set
# X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
# # Run classifier, using a model that is too regularized (C too low) to see
# # the impact on the results
# classifier = svm.SVC(kernel='linear', C=0.01)
# y_pred = classifier.fit(X_train, y_train).predict(X_test)
def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix - Inflection Category Identification")
else:
print('Confusion matrix, without normalization')
print(cm)
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True Inflection Category')
plt.xlabel('Predicted Inflection Category')
avg_gold = [line.split()[0].strip() for line in open("proto_infl_id_preds.txt").readlines()]
avg_pred = [line.split()[1].strip() for line in open("proto_infl_id_preds.txt").readlines()]
# Compute confusion matrix
cnf_matrix = confusion_matrix(avg_gold, avg_pred)
np.set_printoptions(precision=2)
class_names = ['PL', '3S', 'PRESP', 'PAST', 'PASTP', 'IRR_PAST', 'CP']
# Plot non-normalized confusion matrix
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=class_names,
title='Confusion matrix, without normalization')
# Plot normalized confusion matrix
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=class_names, normalize=True,
title="Confusion Matrix - Inflection Category Identification (Proto Centroid)")
plt.show()