forked from VCL3D/DeepDepthDenoising
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathframework.py
48 lines (45 loc) · 1.96 KB
/
framework.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import torch
import datetime
import numpy
import random
from .opt import *
from .visualization import *
def initialize(args):
# create and init device
print("{} | Torch Version: {}".format(datetime.datetime.now(), torch.__version__))
if args.seed > 0:
print("Set to reproducibility mode with seed: {}".format(args.seed))
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
numpy.random.seed(args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
random.seed(args.seed)
gpus = [int(id) for id in args.gpu.split(',') if int(id) >= 0]
device = torch.device("cuda:{}" .format(gpus[0]) if torch.cuda.is_available() and len(gpus) > 0 and gpus[0] >= 0 else "cpu")
print("Training {0} for {1} epochs using a batch size of {2} on {3}".format(args.name, args.epochs, args.batch_size, device))
# create visualizer
visualizer = NullVisualizer() if args.visdom is None\
else VisdomVisualizer(args.name, args.visdom,\
count=4 if 4 <= args.batch_size else args.batch_size)
if args.visdom is None:
args.visdom_iters = 0
# create & init model
model_params = {
'width': 640,
'height': 360,
'ndf': args.ndf,
'dilation': args.dilation,
'norm_type': args.normalization,
'upsample_type': args.upsample_type
}
return device, visualizer, model_params
def init_optimizer(model, args):
opt_params = OptimizerParameters(learning_rate=args.lr, momentum=args.momentum,\
momentum2=args.momentum2, epsilon=args.epsilon)
optimizer = get_optimizer(args.optimizer, model.parameters(), opt_params)
if args.opt_state is not None:
opt_state = torch.load(args.opt_state)
print("Loading previously saved optimizer state from {}".format(args.opt_state))
optimizer.load_state_dict(opt_state["optimizer_state_dict"])
return optimizer