Skip to content

Commit 22345e2

Browse files
committed
edited snippit
1 parent d14e4ba commit 22345e2

File tree

1 file changed

+128
-0
lines changed

1 file changed

+128
-0
lines changed

kolmogorov_smirnov_test.ipynb

Lines changed: 128 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,128 @@
1+
{
2+
"metadata": {
3+
"name": "",
4+
"signature": "sha256:e09ae16e2934781defa7f6b97ad14295518732fccc8478f9854e4ea31013324d"
5+
},
6+
"nbformat": 3,
7+
"nbformat_minor": 0,
8+
"worksheets": [
9+
{
10+
"cells": [
11+
{
12+
"cell_type": "code",
13+
"collapsed": false,
14+
"input": [
15+
"# Import required packages\n",
16+
"from scipy import stats\n",
17+
"import scipy as sp\n",
18+
"import numpy as np\n",
19+
"import math\n",
20+
"import matplotlib.pyplot as plt\n",
21+
"%matplotlib inline"
22+
],
23+
"language": "python",
24+
"metadata": {},
25+
"outputs": [],
26+
"prompt_number": 9
27+
},
28+
{
29+
"cell_type": "code",
30+
"collapsed": false,
31+
"input": [
32+
"# Create x, which is uniformly distributed\n",
33+
"x = np.random.uniform(size=1000)\n",
34+
"\n",
35+
"# Plot x to double check its distribution\n",
36+
"plt.hist(x)\n",
37+
"plt.show()"
38+
],
39+
"language": "python",
40+
"metadata": {},
41+
"outputs": [
42+
{
43+
"metadata": {},
44+
"output_type": "display_data",
45+
"png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAEACAYAAABWLgY0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAD5xJREFUeJzt3X+MZWddx/H3x+5WrVrWpsm2dGtakZKWAAGk/JIwSiVr\no9tGQwEFCzRGRRAhQbaY0OUPETCmaAwEq21WIiUVmtpigx0Li6hQaPqD0u26Lbpxt7hTKD81GKbp\n1z/mLDsdt7N3zr1zz91n36/kJOece86533nuvZ955plzzk1VIUlq0w8MXYAkaf0Y8pLUMENekhpm\nyEtSwwx5SWqYIS9JDVs15JNcnWQhyT3L1v1xkvuS3J3k+iRPWPbY5UnuT7InyUvXs3BJ0tEdrSd/\nDbB1xbpbgKdW1TOAvcDlAEnOA14OnNft8/4k/qUgSQNaNYSr6jPAN1asm6+qR7vF24At3fxFwLVV\ntVhV+4AHgPMnW64kaS3G7Wm/Dri5m38icGDZYweAM8Y8viRpDL1DPskfAN+rqg+vspn3TJCkAW3o\ns1OS1wAXAi9ZtvpB4Mxly1u6dSv3NfglqYeqylr3WXNPPslW4K3ARVX1v8seuhF4RZITk5wNPBn4\n/OMU6lTFFVdcMXgNszLZFraFbbH61NeqPfkk1wIvBk5Nsh+4gqWzaU4E5pMAfLaqXl9Vu5NcB+wG\nHgFeX+NUJkka26ohX1WvPMLqq1fZ/l3Au8YtSpI0GZ7HPqC5ubmhS5gZtsVhtsVhtsX4Mu0RlSSO\n4kjSGiWhpvGPV0nSscOQl6SGGfKS1DBDXpIa1uuK13E9+9kvOfpG6yiBt73tt3jZy142aB2StN4G\nCfk77nj7EE/7fRs2fID9+/cPWoMkTcMgIf/YW95MX/L3gz6/JE2LY/KS1DBDXpIaZshLUsMMeUlq\nmCEvSQ0z5CWpYYa8JDVsoPPkJc267pvfBuetycdjyEtaxdABOxu/aI5lDtdIUsMMeUlq2CBf/zf0\nn4AbN76FxcUrB63hEMcbNauWxuSHfn/Gz0in79f/Hedj8kO/eRxvlLS+HK6RpIYZ8pLUMENekhpm\nyEtSwwx5SWqYIS9JDVs15JNcnWQhyT3L1p2SZD7J3iS3JNm07LHLk9yfZE+Sl65n4ZKkoztaT/4a\nYOuKdduB+ao6B7i1WybJecDLgfO6fd6fxL8UJGlAq4ZwVX0G+MaK1duAnd38TuDibv4i4NqqWqyq\nfcADwPmTK1WStFZ9etqbq2qhm18ANnfzTwQOLNvuAHDGGLVJksY01nBKLd1UYrV7Awx93wBJOq71\nuXfNQpLTqupgktOBh7r1DwJnLttuS7fuCHYsm5/rJh3PZuULKsCbxmk27Nq1i127do19nKPehTLJ\nWcBNVfW0bvm9wMNV9Z4k24FNVbW9+8frh1kahz8D+Efgp2rFE8zWXSiH/jB7h71DZuOOh+Brcths\nvCa+Hoesy10ok1wLvBg4Ncl+4B3Au4HrklwG7AMuAaiq3UmuA3YDjwCvXxnwkqTpOs7vJz/07yB7\nKYfMRq8RfE0Om43XxNfjEO8nr95maTxcvh4rzUp7HKu/bAx5dYZ+A8/GB3l2DP16wOy8JrbFOLwi\nVZIaZk9ekkYwK8NGa2XIS9JIhh426vdLxuEaSWqYIS9JDTPkJalhhrwkNcyQl6SGGfKS1DBPoRzY\nsXruraRjgyE/uKHPvYVj+ZJtSatzuEaSGmbIS1LDDHlJapghL0kNM+QlqWGeXSOt4GmtaokhL/0/\nQ5/W6i8ZTY7DNZLUMENekhpmyEtSwwx5SWqYIS9JDTPkJalhhrwkNcyQl6SGGfKS1LDeIZ/k8iT3\nJrknyYeT/GCSU5LMJ9mb5JYkmyZZrCRpbXqFfJKzgN8AnlVVTwNOAF4BbAfmq+oc4NZuWZI0kL49\n+W8Di8BJSTYAJwFfAbYBO7ttdgIXj12hJKm3XiFfVV8H/gT4T5bC/ZtVNQ9srqqFbrMFYPNEqpQk\n9dLrLpRJngT8HnAW8C3gb5O8avk2VVVJHud2fjuWzc91kyTpsF3dNJ6+txr+aeBfq+phgCTXA88H\nDiY5raoOJjkdeOjIu+/o+bSSdLyY47Ed4Hf2OkrfMfk9wPOS/HCWvmHhAmA3cBNwabfNpcANPY8v\nSZqAXj35qro7yV8DtwOPAncAfwH8GHBdksuAfcAlE6pTktRDqqb7LThL4/TDfvPOxo1vYXHxSoau\nY+kbgIauAWajjlmoAWajjlmoAWajjlmoAWajjlBVa/7aMK94laSGGfKS1DBDXpIaZshLUsMMeUlq\nmCEvSQ0z5CWpYYa8JDXMkJekhhnyktQwQ16SGmbIS1LDDHlJapghL0kNM+QlqWGGvCQ1zJCXpIYZ\n8pLUMENekhpmyEtSwwx5SWqYIS9JDTPkJalhhrwkNcyQl6SGGfKS1DBDXpIaZshLUsN6h3ySTUk+\nmuS+JLuTPDfJKUnmk+xNckuSTZMsVpK0NuP05P8UuLmqzgWeDuwBtgPzVXUOcGu3LEkaSK+QT/IE\n4EVVdTVAVT1SVd8CtgE7u812AhdPpEpJUi99e/JnA19Nck2SO5JcleRHgM1VtdBtswBsnkiVkqRe\nNoyx37OAN1TVF5K8jxVDM1VVSerIu+9YNj/XTZKkw3Z103j6hvwB4EBVfaFb/ihwOXAwyWlVdTDJ\n6cBDR959R8+nlaTjxRyP7QC/s9dReg3XVNVBYH+Sc7pVFwD3AjcBl3brLgVu6FWVJGki+vbkAd4I\n/E2SE4EvA68FTgCuS3IZsA+4ZOwKJUm99Q75qrobeM4RHrqgfzmSpEnyildJapghL0kNM+QlqWGG\nvCQ1zJCXpIYZ8pLUMENekhpmyEtSwwx5SWqYIS9JDTPkJalhhrwkNcyQl6SGGfKS1DBDXpIaZshL\nUsMMeUlqmCEvSQ0z5CWpYYa8JDXMkJekhhnyktQwQ16SGmbIS1LDDHlJapghL0kNM+QlqWGGvCQ1\nbKyQT3JCkjuT3NQtn5JkPsneJLck2TSZMiVJfYzbk38TsBuobnk7MF9V5wC3dsuSpIH0DvkkW4AL\ngb8E0q3eBuzs5ncCF49VnSRpLOP05K8E3go8umzd5qpa6OYXgM1jHF+SNKYNfXZK8ovAQ1V1Z5K5\nI21TVZWkjvQY7Fg2P9dNkqTDdnXTeHqFPPACYFuSC4EfAk5O8iFgIclpVXUwyenAQ0fefUfPp5Wk\n48Ucj+0Av7PXUXoN11TV26vqzKo6G3gF8MmqejVwI3Bpt9mlwA29qpIkTcSkzpM/NCzzbuDnk+wF\nfq5bliQNpO9wzfdV1aeBT3fzXwcuGPeYkqTJ8IpXSWqYIS9JDTPkJalhhrwkNcyQl6SGGfKS1DBD\nXpIaZshLUsMMeUlqmCEvSQ0z5CWpYYa8JDXMkJekhhnyktQwQ16SGmbIS1LDDHlJapghL0kNM+Ql\nqWGGvCQ1zJCXpIYZ8pLUMENekhpmyEtSwwx5SWqYIS9JDTPkJalhhrwkNaxXyCc5M8mnktyb5EtJ\nfrdbf0qS+SR7k9ySZNNky5UkrUXfnvwi8OaqeirwPOB3kpwLbAfmq+oc4NZuWZI0kF4hX1UHq+qu\nbv6/gfuAM4BtwM5us53AxZMoUpLUz9hj8knOAp4J3AZsrqqF7qEFYPO4x5ck9TdWyCf5UeBjwJuq\n6jvLH6uqAmqc40uSxrOh745JNrIU8B+qqhu61QtJTquqg0lOBx468t47ls3PdZMk6bBd3TSeLHW4\n17hTEpbG3B+uqjcvW//ebt17kmwHNlXV9hX71tAd/I0b38Li4pUMXQdkBmqA2ahjFmqA2ahjFmqA\n2ahjFmqA2agjVFXWulffnvwLgVcBX0xyZ7fucuDdwHVJLgP2AZf0PL4kaQJ6hXxV/TOPP55/Qf9y\nJEmT5BWvktQwQ16SGmbIS1LDDHlJapghL0kNM+QlqWGGvCQ1zJCXpIYZ8pLUMENekhpmyEtSwwx5\nSWqYIS9JDTPkJalhhrwkNcyQl6SGGfKS1DBDXpIaZshLUsMMeUlqmCEvSQ0z5CWpYYa8JDXMkJek\nhhnyktQwQ16SGmbIS1LDDHlJatjEQz7J1iR7ktyf5G2TPr4kaXQTDfkkJwB/DmwFzgNemeTcST6H\nJGl0k+7Jnw88UFX7qmoR+Ahw0YSfQ5I0okmH/BnA/mXLB7p1kqQBbJjw8WqUjU4++Zcm/LRr873v\n3cvi4qAlSNJUTDrkHwTOXLZ8Jku9+cf49rc/PuGn7StDF8Bs1ACzUccs1ACzUccs1ACzUccs1ACz\nU8fapGqkzvdoB0s2AP8GvAT4CvB54JVVdd/EnkSSNLKJ9uSr6pEkbwD+ATgB+CsDXpKGM9GevCRp\ntqzbFa+jXBSV5M+6x+9O8sz1qmVoR2uLJL/WtcEXk/xLkqcPUec0jHqxXJLnJHkkyS9Ps75pGvEz\nMpfkziRfSrJryiVOzQifkVOTfCLJXV1bvGaAMtddkquTLCS5Z5Vt1pabVTXxiaWhmgeAs4CNwF3A\nuSu2uRC4uZt/LvC59ahl6GnEtng+8IRufuvx3BbLtvsk8HHgV4aue8D3xSbgXmBLt3zq0HUP2BY7\ngD861A7Aw8CGoWtfh7Z4EfBM4J7HeXzNublePflRLoraBuwEqKrbgE1JNq9TPUM6altU1Wer6lvd\n4m3AlinXOC2jXiz3RuCjwFenWdyUjdIWvwp8rKoOAFTV16Zc47SM0hb/BZzczZ8MPFxVj0yxxqmo\nqs8A31hlkzXn5nqF/CgXRR1pmxbDba0XiF0G3LyuFQ3nqG2R5AyWPuAf6Fa1+k+jUd4XTwZOSfKp\nJLcnefXUqpuuUdriKuCpSb4C3A28aUq1zZo15+akz5M/ZNQP5soTT1v8QI/8MyX5WeB1wAvXr5xB\njdIW7wO2V1UlCcfqyclHN0pbbASexdIpyScBn03yuaq6f10rm75R2uLtwF1VNZfkScB8kmdU1XfW\nubZZtKbcXK+QH+WiqJXbbOnWtWakC8S6f7ZeBWytqtX+XDuWjdIWzwY+spTvnAr8QpLFqrpxOiVO\nzShtsR/4WlV9F/hukn8CngG0FvKjtMULgD8EqKovJ/kP4CnA7VOpcHasOTfXa7jmduDJSc5KciLw\ncmDlh/RG4NcBkjwP+GZVLaxTPUM6alsk+QngeuBVVfXAADVOy1Hboqp+sqrOrqqzWRqX/+0GAx5G\n+4z8HfAzSU5IchJL/2jbPeU6p2GUttgDXADQjUE/Bfj3qVY5G9acm+vSk6/HuSgqyW92j3+wqm5O\ncmGSB4D/AV67HrUMbZS2AN4B/Djwga4Hu1hV5w9V83oZsS2OCyN+RvYk+QTwReBR4Kqqai7kR3xf\nvAu4JsndLHVOf7+qvj5Y0eskybXAi4FTk+wHrmBp2K53bnoxlCQ1zK//k6SGGfKS1DBDXpIaZshL\nUsMMeUlqmCEvSQ0z5CWpYYa8JDXs/wCLB9KBBH4/dgAAAABJRU5ErkJggg==\n",
46+
"text": [
47+
"<matplotlib.figure.Figure at 0x107bba690>"
48+
]
49+
}
50+
],
51+
"prompt_number": 10
52+
},
53+
{
54+
"cell_type": "code",
55+
"collapsed": false,
56+
"input": [
57+
"# Create x, which is NOT uniformly distributed\n",
58+
"y = x**4\n",
59+
"\n",
60+
"# Plot x to double check its distribution\n",
61+
"plt.hist(y)\n",
62+
"plt.show()"
63+
],
64+
"language": "python",
65+
"metadata": {},
66+
"outputs": [
67+
{
68+
"metadata": {},
69+
"output_type": "display_data",
70+
"png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEACAYAAAC9Gb03AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEQpJREFUeJzt3X+s3Xddx/Hni3ajghm1uUvZuumqbLASgWEoKBC6OJdK\ndFs02YaCFacxTpH4h9qSyOYfjuE/ojEjZgJpCJQ0/JiFzNEydgIxsLnYbbDLdS3apHfQO5gIOCFp\ns7d/3G/ZpXb3fm/vPT/64flITvb5fs/ne77v+9k9r/M5n/M9t6kqJEntes64C5AkDZdBL0mNM+gl\nqXEGvSQ1zqCXpMYZ9JLUuF5Bn2R9ko8m+UqS6SSvTrIhyYEkjyXZn2T9gv67khxKMpPk6uGVL0la\nSt8Z/d8Cd1fV5cDLgBlgJ3Cgqi4D7u22SbIFuAHYAmwH7kjiOwdJGpMlAzjJC4DXV9X7AarqRFV9\nG7gG2N112w1c17WvBfZU1fGqOgIcBrauduGSpH76zLQ3A99I8oEk/5bkziTPBzZW1VzXZw7Y2LUv\nBGYXHD8LbFq1iiVJy9In6NcCrwTuqKpXAk/RLdOcVPN/R2Gxv6Xg31mQpDFZ26PPLDBbVf/abX8U\n2AUcS/LCqjqW5ALgie7+x4GLFxx/UbfvB5IY/JJ0Bqoqyz1myRl9VR0Djia5rNt1FfAo8ElgR7dv\nB3BX194H3Jjk3CSbgUuBB07zuN6quOWWW8Zew6TcHAvHwrFY/Ham+szoAd4GfCjJucBXgbcCa4C9\nSW4CjgDXdwE+nWQvMA2cAG6ulVQoSVqRXkFfVQ8DrzrNXVc9S//bgNtWUJckaZV4ffuYbdu2bdwl\nTAzH4hmOxTMci5XLOFZVkriaI0nLlIQaxoexkqSzm0EvSY0z6CWpcQa9JDXOoJekxhn0ktS4vt+M\nXXVTUz81rlMDcM458OijB9mwYcNY65CkYRtb0D/55OfGdWoAnvvcV/D000+PtQZJGoWxBT2Md0af\nrBnr+SVpVFyjl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16S\nGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMb1CvokR5I8kuRgkge6fRuSHEjyWJL9SdYv6L8r\nyaEkM0muHlbxkqSl9Z3RF7Ctqq6oqq3dvp3Agaq6DLi32ybJFuAGYAuwHbgjie8cJGlMlhPAOWX7\nGmB3194NXNe1rwX2VNXxqjoCHAa2Ikkai+XM6D+T5MEkv9ft21hVc117DtjYtS8EZhccOwtsWnGl\nkqQzsrZnv9dW1deTnA8cSDKz8M6qqiS1yPGL3SdJGqJeQV9VX+/++40kn2B+KWYuyQur6liSC4An\nuu6PAxcvOPyibt8pbl3Q3tbdJEknDQYDBoPBih8nVYtPtpM8D1hTVd9N8nxgP/CXwFXAk1X17iQ7\ngfVVtbP7MPbDzL8YbAI+A7yoFpxofvY/3kn+unVTHD06w9TU1FjrkKS+klBVp35euqQ+M/qNwCeS\nnOz/oaran+RBYG+Sm4AjwPUAVTWdZC8wDZwAbq6lXk0kSUOz5Ix+KCd1Ri9Jy3amM3qvb5ekxhn0\nktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9J\njTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4\ng16SGmfQS1LjDHpJalyvoE+yJsnBJJ/stjckOZDksST7k6xf0HdXkkNJZpJcPazCJUn99J3Rvx2Y\nBqrb3gkcqKrLgHu7bZJsAW4AtgDbgTuS+K5BksZoyRBOchHwRuAfgXS7rwF2d+3dwHVd+1pgT1Ud\nr6ojwGFg62oWLElanj6z7b8B/hR4esG+jVU117XngI1d+0JgdkG/WWDTSouUJJ25tYvdmeRXgCeq\n6mCSbafrU1WVpE5338kup99964L2tu4mSTppMBgwGAxW/DipevaMTnIb8BbgBLAOOA/4OPAqYFtV\nHUtyAXBfVb0kyU6Aqrq9O/4e4Jaquv+Ux61nzf8RWbduiqNHZ5iamhprHZLUVxKqKkv3/GGLLt1U\n1Tuq6uKq2gzcCHy2qt4C7AN2dN12AHd17X3AjUnOTbIZuBR4YLlFSZJWz6JLN6dxchp+O7A3yU3A\nEeB6gKqaTrKX+St0TgA312JvGSRJQ7fo0s3QTurSjSQt21CWbiRJZz+DXpIaZ9BLUuMMeklqnEEv\nSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLU\nOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklq3KJBn2Rd\nkvuTPJRkOsm7uv0bkhxI8liS/UnWLzhmV5JDSWaSXD3sH0CStLhFg76qvg9cWVWvAF4GXJnkdcBO\n4EBVXQbc222TZAtwA7AF2A7ckcR3DZI0RkuGcFX9b9c8F1gDfAu4Btjd7d8NXNe1rwX2VNXxqjoC\nHAa2rmbBkqTlWTLokzwnyUPAHHBfVT0KbKyqua7LHLCxa18IzC44fBbYtIr1SpKWae1SHarqaeAV\nSV4AfDrJlafcX0lqsYc4/e5bF7S3dTdJ0kmDwYDBYLDix0nVYhl9SufkL4DvAb8LbKuqY0kuYH6m\n/5IkOwGq6vau/z3ALVV1/ymPU8+a/yOybt0UR4/OMDU1NdY6JKmvJFRVlnvcUlfdTJ28oibJjwG/\nBBwE9gE7um47gLu69j7gxiTnJtkMXAo8sNyiJEmrZ6mlmwuA3d2VM88BPlhV9yY5COxNchNwBLge\noKqmk+wFpoETwM21nLcMkqRVt6ylm1U7qUs3krRsQ1m6kSSd/Qx6SWqcQS9JjTPoJalxBr0kNc6g\nl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJ\napxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxSwZ9kouT3Jfk\n0SRfTvLH3f4NSQ4keSzJ/iTrFxyzK8mhJDNJrh7mDyBJWlyfGf1x4E+q6qXAa4A/THI5sBM4UFWX\nAfd22yTZAtwAbAG2A3ck8Z2DJI3JkgFcVceq6qGu/T/AV4BNwDXA7q7bbuC6rn0tsKeqjlfVEeAw\nsHWV65Yk9bSsmXaSS4ArgPuBjVU11901B2zs2hcCswsOm2X+hUGSNAZr+3ZM8uPAx4C3V9V3k/zg\nvqqqJLXI4ae579YF7W3dTZJ00mAwYDAYrPhxUrVYPnedknOATwH/XFXv6fbNANuq6liSC4D7quol\nSXYCVNXtXb97gFuq6v4Fj1enzf4RWrduiqNHZ5iamhprHZLUVxKqKkv3/GF9rroJ8D5g+mTId/YB\nO7r2DuCuBftvTHJuks3ApcADyy1MkrQ6+izdvBZ4M/BIkoPdvl3A7cDeJDcBR4DrAapqOsleYBo4\nAdxcfd42SJKGotfSzaqf1KUbSVq2oS3dSJLObga9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxB\nL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS\n1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktS4JYM+yfuTzCX50oJ9G5IcSPJY\nkv1J1i+4b1eSQ0lmklw9rMIlSf30mdF/ANh+yr6dwIGqugy4t9smyRbgBmBLd8wdSXzXIEljtGQI\nV9XngW+dsvsaYHfX3g1c17WvBfZU1fGqOgIcBrauTqmSpDNxprPtjVU117XngI1d+0JgdkG/WWDT\nGZ5DkrQK1q70AaqqktRiXVZ6jmE5//zzx10CAFUTO0SSGnCmQT+X5IVVdSzJBcAT3f7HgYsX9Luo\n23caty5ob+tu4zDukM2Yzy9pUg0GAwaDwYofJ31mk0kuAT5ZVT/bbf818GRVvTvJTmB9Ve3sPoz9\nMPPr8puAzwAvqlNOMv8OYLwBu27dFN///pOMuw6IM3pJvSShqpY9O1xyRp9kD/AGYCrJUeCdwO3A\n3iQ3AUeA6wGqajrJXmAaOAHcfGrIS5JGq9eMftVP6ox+AWf0kvo50xm917hLUuMMeklqnEEvSY1b\n8XX0Wrlk/JdY+jmB1C6DfiKMO2TH/0IjaXhcupGkxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+gl\nqXFeRy9gMr60BX5xSxoGg16dSQjYyXixkVrj0o0kNc6gl6TGGfSS1DjX6DVRJuFDYT8QVmsMek2Y\ncYdsJuLFBnzB0eox6KX/ZxICdjJebNQGg16aUJPwzsJ3FW0w6KWJNe6QHf8LzaSYhBfdlTDoJT2r\nSQm4yXhnMQk1nNn/D4Ne0iLO3nDTM7yOXpIa54xe0sSblCWks5VBL+ksMO4lpLP7hcalG0lq3FCC\nPsn2JDNJDiX582GcQ5LUz6oHfZI1wN8D24EtwJuSXL7a55Ek9TOMGf1W4HBVHamq48BHgGuHcB5J\nUg/DCPpNwNEF27PdPknSGAzjqpteH4+fd96vDuHU/T311HfGen5JGpVhBP3jwMULti9mflb/Q77z\nnU8N4dRnYhIum7KGZ0xCHZNQA0xGHZNQA0xGHZNQw5nJav8NiSRrgX8HfhH4GvAA8Kaq+sqqnkiS\n1Muqz+ir6kSSPwI+DawB3mfIS9L4rPqMXpI0WYb6zdg+X5xK8nfd/Q8nuWKY9YzTUmOR5De7MXgk\nyb8kedk46hyFvl+oS/KqJCeS/Noo6xulns+RbUkOJvlyksGISxyZHs+RqST3JHmoG4vfHkOZQ5fk\n/UnmknxpkT7Ly82qGsqN+WWbw8AlwDnAQ8Dlp/R5I3B313418MVh1TPOW8+x+HngBV17+4/yWCzo\n91ngU8Cvj7vuMf5erAceBS7qtqfGXfcYx+JW4F0nxwF4Elg77tqHMBavB64AvvQs9y87N4c5o+/z\nxalrgN0AVXU/sD7JxiHWNC5LjkVVfaGqvt1t3g9cNOIaR6XvF+reBnwU+MYoixuxPmPxG8DHqmoW\noKq+OeIaR6XPWHwdOK9rnwc8WVUnRljjSFTV54FvLdJl2bk5zKDv88Wp0/VpMeCW+yWym4C7h1rR\n+Cw5Fkk2Mf8kf2+3q9UPkvr8XlwKbEhyX5IHk7xlZNWNVp+xuBN4aZKvAQ8Dbx9RbZNm2bk5zD9T\n3PfJeerFqS0+qXv/TEmuBH4HeO3wyhmrPmPxHmBnVVXm/xD52XsB8+L6jMU5wCuZv1z5ecAXknyx\nqg4NtbLR6zMW7wAeqqptSX4GOJDk5VX13SHXNomWlZvDDPo+X5w6tc9F3b7W9PoSWfcB7J3A9qpa\n7K3b2azPWPwc8JHuH5uYAn45yfGq2jeaEkemz1gcBb5ZVd8Dvpfkc8DLgdaCvs9Y/ALwVwBV9dUk\n/wm8GHhwJBVOjmXn5jCXbh4ELk1ySZJzgRuAU5+o+4DfAkjyGuC/q2puiDWNy5JjkeQngY8Db66q\nw2OocVSWHIuq+umq2lxVm5lfp/+DBkMe+j1H/gl4XZI1SZ7H/Idv0yOucxT6jMUMcBVAtyb9YuA/\nRlrlZFh2bg5tRl/P8sWpJL/f3f8PVXV3kjcmOQw8Bbx1WPWMU5+xAN4J/ATw3m4me7yqto6r5mHp\nORY/Eno+R2aS3AM8AjwN3FlVzQV9z9+L24APJHmY+Unqn1XVf42t6CFJsgd4AzCV5ChwC/NLeGec\nm35hSpIa5z8lKEmNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWrc/wFriZxMpDoiJwAA\nAABJRU5ErkJggg==\n",
71+
"text": [
72+
"<matplotlib.figure.Figure at 0x107af6d50>"
73+
]
74+
}
75+
],
76+
"prompt_number": 11
77+
},
78+
{
79+
"cell_type": "code",
80+
"collapsed": false,
81+
"input": [
82+
"# Run kstest on x. We want the second returned value to be \n",
83+
"# not statistically significant, meaning that both come from \n",
84+
"# the same distribution.\n",
85+
"stats.kstest(x, 'uniform', args=(min(x),max(x)))"
86+
],
87+
"language": "python",
88+
"metadata": {},
89+
"outputs": [
90+
{
91+
"metadata": {},
92+
"output_type": "pyout",
93+
"prompt_number": 12,
94+
"text": [
95+
"(0.026995716660981411, 0.45735224284132037)"
96+
]
97+
}
98+
],
99+
"prompt_number": 12
100+
},
101+
{
102+
"cell_type": "code",
103+
"collapsed": false,
104+
"input": [
105+
"# Run kstest on y. We want the second returned value to be \n",
106+
"# statistically significant, meaning that likely do not both \n",
107+
"# come from the same distribution.\n",
108+
"stats.kstest(y, 'uniform', args=(min(y),max(y)))"
109+
],
110+
"language": "python",
111+
"metadata": {},
112+
"outputs": [
113+
{
114+
"metadata": {},
115+
"output_type": "pyout",
116+
"prompt_number": 13,
117+
"text": [
118+
"(0.47537839506450752, 0.0)"
119+
]
120+
}
121+
],
122+
"prompt_number": 13
123+
}
124+
],
125+
"metadata": {}
126+
}
127+
]
128+
}

0 commit comments

Comments
 (0)