See my following example:
gap> SGGenSet227me;
[ [ [ 0, -1, 0, 1/2 ], [ 0, 0, -1, 1/2 ], [ -1, 0, 0, 1/2 ], [ 0, 0, 0, 1 ] ], [ [ -15/4, 29/4, -15/4, -15/16 ], [ -33/8, 55/8, -25/8, -25/32 ],
[ -25/8, 55/8, -33/8, -41/32 ], [ 0, 0, 0, 1 ] ] ]
gap> S1:=SpaceGroupOnLeftIT(3,227);
SpaceGroupOnLeftIT(3,227,'2')
gap> S2:=AffineCrystGroupOnLeft(SGGenSet227me);
<matrix group with 2 generators>
gap> conj:=AffineIsomorphismSpaceGroups(S2, S1);
[ [ 5/2, 3, 5/2, -5 ], [ 5/2, 5/2, 3, -21/4 ], [ 3, 5/2, 5/2, -5 ], [ 0, 0, 0, 1 ] ]
gap> S2^(conj^-1)=S1;
true
Here, S1 is the 3d space group 227 given in ITA, then how can I use your package to compute the irreducible representations of S2?
Regards,
Zhao