forked from brad-richardson/multi-agent-negotiation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
45 lines (31 loc) · 1.32 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import random
import math
import const
random.seed(0)
STEP_COUNTS = [100]
COMPANY_COUNTS = [100]
CANDIDATE_COUNTS = [100]
# COMPANY_CANDIDATES_TO_HIRE = math.ceil(CANDIDATE_COUNT/COMPANY_COUNT + 1)
# Strategies to choose from (distributed uniformly, in order)
COMPANY_STRATEGY_ASSIGNMENT = list(const.Strategy)
CANDIDATE_STRATEGY_ASSIGNMENT = list(const.Strategy)
# Used for determining value of offers and for deciding personal valuation
# Ex: Avg $ = 100,000, CANDIDATE_VALUATION_STD_DEV_DIVISOR = 5
# Will generate valuation using normal distribution with 100000 as mu and 20000 as sigma (100000/5)
CANDIDATE_VALUATION_STD_DEV_DIVISOR = 10
# Random number 1-100 rolled. If above this, offer is accepted
COMPANY_RANDOM_STRATEGY_THRESHOLD = 50
CANDIDATE_RANDOM_STRATEGY_THRESHOLD = 50
# How high above/below willing to accept
ACCEPTANCE_RADIUS_PCT = 0.05
# How much value is lost when a company doesn't hire all the employees they want
COMPANY_LOST_HAPPINESS_MISSING_EMPLOYEES = 0
COMPANY_ACCEPTED_OFFER_MULTIPLIER = 1.0
CANDIDATE_ACCEPTED_OFFER_MULTIPLIER = 1.0
def company_candidates_to_hire(companies, candidates):
return math.ceil(candidates/companies + 1)
# How far up or down to increase/decrease on negotiation
def negotiation_pct():
return random.uniform(.02, .05)
def offer_expire_time():
return random.randint(3, 5)